Preprint / Version 3

Predicting ICU Admission in Patients With COVID-19

##article.authors##

  • Ikshita Sathanur Eastlake High School

DOI:

https://doi.org/10.58445/rars.19

Keywords:

Computational Epidemiology, Disease Detection and Diagnosis, Coronavirus Disease 2019, Public Health, Machine Learning

Abstract

Coronavirus disease 2019 (COVID-19) has become a global pandemic, affecting the lives of many and challenging unprepared healthcare systems. Due to its recency, there is still much that is unknown about the virus. Blood cell counts as a reflection of virus infection and recovery have played a vital role in COVID-19 immune response, however their correlation with symptom severity has yet to be thoroughly explored.        

In this study, the blood counts, and various demographic factors of 383 samples were studied. Anonymized patients in this sample had data collected from Hospital Sírio-Libanês, São Paulo, Brazil. This data was analyzed to determine likelihood of intensive care unit (ICU) admission in patients with COVID-19 based on the blood counts of hemoglobin, platelets, linfocitos (lymphocytes), leukocytes, and neutrophiles, as well as four relevant covariates: body tewmperature, age, gender, and immunocompromised status. From the model, it was determined that neutrophile and leukocyte counts had the greatest predictive influence on ICU admission, while age and immunocompromised status had the least.

With the findings of this study, doctors and other medical health professionals can use the counts of various blood factors in parallel with data on basic relevant covariates to predict infection severity in patients with COVID-19.

References

Kaye, A. D.; Okeagu, C. N.; Pham, A. D.; Silva, R. A.; Hurley, J. J.; Arron, B. L.; Sarfraz, N.; Lee, H. N.; Ghali, G. E.; Gamble, J. W.; Liu, H.; Urman, R. D.; Cornett, E. M. Economic Impact of COVID-19 Pandemic on Healthcare Facilities and Systems: International Perspectives. Best Pract. Res. Clin. Anaesthesiol. 2021, 35 (3), 293–306. https://doi.org/10.1016/j.bpa.2020.11.009.

Kumar, A.; Singh, R.; Kaur, J.; Pandey, S.; Sharma, V.; Thakur, L.; Sati, S.; Mani, S.; Asthana, S.; Sharma, T. K.; Chaudhuri, S.; Bhattacharyya, S.; Kumar, N. Wuhan to World: The COVID-19 Pandemic. Front. Cell. Infect. Microbiol. 2021, 11, 596201. https://doi.org/10.3389/fcimb.2021.596201.

COVID-19 Data Explorer - Our World in Data. https://ourworldindata.org/explorers/coronavirus-data-explorer (accessed 2022-09-02).

What Is Coronavirus? | Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus (accessed 2022-09-02).

CDC. Healthcare Workers. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/sop-triage-prevent-transmission.html (accessed 2022-09-04).

Smith, G.; Nielsen, M. Criteria for Admission. BMJ 1999, 318 (7197), 1544–1547.

Intensive care units (ICUs). https://www.healthywa.wa.gov.au/Articles/F_I/Intensive-care-units-ICUs (accessed 2022-09-02).

Halacli, B.; Kaya, A.; Topeli, A. Critically-Ill COVID-19 Patient. Turk. J. Med. Sci. 2020, 50 (SI-1), 585–591. https://doi.org/10.3906/sag-2004-122.

Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Our World Data 2020.

Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.-M.; Divatia, J. V.; Shrestha, B. R.; Arabi, Y. M.; Ng, J.; Gomersall, C. D.; Nishimura, M.; Koh, Y.; Du, B.; Asian Critical Care Clinical Trials Group. Intensive Care Management of Coronavirus Disease 2019 (COVID-19): Challenges and Recommendations. Lancet Respir. Med. 2020, 8 (5), 506–517. https://doi.org/10.1016/S2213-2600(20)30161-2.

Functions of blood: its role in the immune system. NHS Blood Donation. https://www.blood.co.uk/news-and-campaigns/the-donor/latest-stories/functions-of-blood-its-role-in-the-immune-system/ (accessed 2022-09-02).

Oxford Languages and Google - English | Oxford Languages. https://languages.oup.com/google-dictionary-en/ (accessed 2022-09-02).

White Blood Cells: What Are They, Normal Ranges, Role & Function. Cleveland Clinic. https://my.clevelandclinic.org/health/body/21871-white-blood-cells (accessed 2022-09-02).

Zhu, B.; Feng, X.; Jiang, C.; Mi, S.; Yang, L.; Zhao, Z.; Zhang, Y.; Zhang, L. Correlation between White Blood Cell Count at Admission and Mortality in COVID-19 Patients: A Retrospective Study. BMC Infect. Dis. 2021, 21 (1), 574. https://doi.org/10.1186/s12879-021-06277-3.

Viral and host factors related to the clinical outcome of COVID-19 | Nature. https://www.nature.com/articles/s41586-020-2355-0 (accessed 2022-09-02).

Definition of immunocompromised - NCI Dictionary of Cancer Terms - NCI. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immunocompromised (accessed 2022-09-05).

COVID-19 - Clinical Data to assess diagnosis. https://www.kaggle.com/datasets/b21ef02ed6bc7a4fbe097bce9aafe3c75879727377b0f475f7bddd0f95906252 (accessed 2022-09-17).

Ronaghan, S. The Mathematics of Decision Trees, Random Forest and Feature Importance in Scikit-learn and Spark. Medium. https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3 (accessed 2022-09-02).

Mayadas, T. N.; Cullere, X.; Lowell, C. A. The Multifaceted Functions of Neutrophils. Annu. Rev. Pathol. 2014, 9, 181–218. https://doi.org/10.1146/annurev-pathol-020712-164023.

High white blood cell count Causes. Mayo Clinic. https://www.mayoclinic.org/symptoms/high-white-blood-cell-count/basics/definition/sym-20050611 (accessed 2022-09-05).

Liu, Z.; Wu, D.; Han, X.; Jiang, W.; Qiu, L.; Tang, R.; Yu, X. Different Characteristics of Critical COVID-19 and Thinking of Treatment Strategies in Non-Elderly and Elderly Severe Adult Patients. Int. Immunopharmacol. 2021, 92, 107343. https://doi.org/10.1016/j.intimp.2020.107343.

CDC. People with Certain Medical Conditions. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed 2022-09-05).

Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Almansoori, T. M.; Smetanina, D.; Simiyu, G. L.; Neidl-Van Gorkom, K.; Ljubisavljevic, M.; Awawdeh, R.; Elshekhali, H.; Lee, M.; Salamin, N.; Sajid, R.; Kiran, D.; Nihalani, S.; Loney, T.; Bedson, A.; Dehdashtian, A.; Al Koteesh, J. Impact of Age and Sex on COVID-19 Severity Assessed From Radiologic and Clinical Findings. Front. Cell. Infect. Microbiol. 2022, 11.

Takahashi, T.; Ellingson, M. K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J. E.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Park, A.; Liu, F.; Meir, A.; Sun, J.; Wang, E. Y.; Casanovas-Massana, A.; Wyllie, A. L.; Vogels, C. B. F.; Earnest, R.; Lapidus, S.; Ott, I. M.; Moore, A. J.; Yale IMPACT Research Team; Shaw, A.; Fournier, J. B.; Odio, C. D.; Farhadian, S.; Dela Cruz, C.; Grubaugh, N. D.; Schulz, W. L.; Ring, A. M.; Ko, A. I.; Omer, S. B.; Iwasaki, A. Sex Differences in Immune Responses That Underlie COVID-19 Disease Outcomes. Nature 2020, 588 (7837), 315–320. https://doi.org/10.1038/s41586-020-2700-3.

Williamson, E. J.; Walker, A. J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C. E.; Curtis, H. J.; Mehrkar, A.; Evans, D.; Inglesby, P.; Cockburn, J.; McDonald, H. I.; MacKenna, B.; Tomlinson, L.; Douglas, I. J.; Rentsch, C. T.; Mathur, R.; Wong, A. Y. S.; Grieve, R.; Harrison, D.; Forbes, H.; Schultze, A.; Croker, R.; Parry, J.; Hester, F.; Harper, S.; Perera, R.; Evans, S. J. W.; Smeeth, L.; Goldacre, B. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature 2020, 584 (7821), 430–436. https://doi.org/10.1038/s41586-020-2521-4.

Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E. J.; Armistead, I.; Bennett, N. M.; Billing, L.; Como-Sabetti, K.; Hill, M.; Kim, S.; Monroe, M. L.; Muse, A.; Reingold, A. L.; Schaffner, W.; Sutton, M.; Talbot, H. K.; Torres, S. M.; Yousey-Hindes, K.; Holstein, R.; Cummings, C.; Brammer, L.; Hall, A. J.; Fry, A. M.; Langley, G. E. Risk Factors for Intensive Care Unit Admission and In-Hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 72 (9), e206–e214. https://doi.org/10.1093/cid/ciaa1012.

Singson, J. R. C. Factors Associated with Severe Outcomes Among Immunocompromised Adults Hospitalized for COVID-19 — COVID-NET, 10 States, March 2020–February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71. https://doi.org/10.15585/mmwr.mm7127a3.

Downloads

Posted

2022-10-10 — Updated on 2022-12-23

Versions