Preprint / Version 1

AI and ML-Augmented Analysis For Precision Oncology and Cancer Diagnostics

##article.authors##

  • Ashvik Rao Lambert High School

DOI:

https://doi.org/10.58445/rars.3316

Keywords:

Artificial Intelligence (AI), Machine Learning (ML), Cancer diagnostics

Abstract

Each year, nearly 20 million people are diagnosed with a form of cancer, and this number is expected to significantly increase. Despite hundreds of years of research on various cancers, the causes and genetic influences behind them are still not fully understood and current treatment options are, at times, unsuccessful. The recent development of artificial intelligence (AI) and machine learning (ML) tools has the potential to accelerate knowledge of and advancements in cancer screening, diagnostics, and treatment. AI can be incorporated into complex sequencing data sets and clinical imaging to allow for earlier detection of cancer. Similarly, by applying these tools to clinical data, AI and ML can drastically improve diagnostics, allowing for more accuracy in identifying cancer types. Additionally, AI and ML can greatly improve patients’ prognoses by utilizing deep learning to predict patient response to different treatments. In this review, I will discuss the integration of AI and ML technologies into cancer screening, diagnostics, and therapeutic approaches to enhance precision medicine and treatment outcomes for cancer patients.

References

Abdul Rasool Hassan, B., Mohammed, A. H., Hallit, S., Malaeb, D., & Hosseini, H. (2025). Exploring the role of artificial intelligence in chemotherapy development, cancer diagnosis, and treatment: present achievements and future outlook. Frontiers in oncology, 15, 1475893. https://doi.org/10.3389/fonc.2025.1475893

Al-Samkari, H., Munoz, C., Geredeli, C., Korantzis, I., Gonzalez Astorga, B., Arslan, C., Cordeiro Camargo, J. F., Scotte, F., Borges, G., Wang, K., Eisen, M., Kuter, D., & Soff, G. A. (2025). Romiplostim for chemotherapy-induced thrombocytopenia (CIT) in colorectal, gastroesophageal, and pancreatic cancers: A global, phase 3, randomized, placebo-controlled trial (RCT). Journal of Clinical Oncology, 43(16), 12007. https://doi.org/10.1200/JCO.2025.43.16_suppl.12007

American Cancer Society. (2025, January 16). Survival Rates for Pancreatic Cancer. American Cancer Society. https://www.cancer.org/cancer/types/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html

Annapragada, A. V., Niknafs, N., White, J. R., Bruhm, D. C., Cherry, C., Medina, J. E., Adleff, V., Hruban, C., Mathios, D., Foda, Z. H., Phallen, J., Scharpf, R. B., & Velculescu, V. E. (2024). Genome-wide repeat landscapes in cancer and cell-free DNA. Science translational medicine, 16(738), eadj9283. https://doi.org/10.1126/scitranslmed.adj9283

Bahado-Singh, R., Vlachos, K. T., Aydas, B., Gordevicius, J., Radhakrishna, U., & Vishweswaraiah, S. (2022). Precision Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer Detection. Frontiers in oncology, 12, 790645. https://doi.org/10.3389/fonc.2022.790645

Cai, Z., Poulos, R. C., Liu, J., & Zhong, Q. (2022). Machine learning for multi-omics data integration in cancer. iScience, 25(2), 103798. https://doi.org/10.1016/j.isci.2022.103798

Chang, T. G., Cao, Y., Sfreddo, H. J., Dhruba, S. R., Lee, S. H., Valero, C., Yoo, S. K., Chowell, D., Morris, L. G. T., & Ruppin, E. (2024). LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. Nature cancer, 5(8), 1158–1175. https://doi.org/10.1038/s43018-024-00772-7

Chen, F. M., Ni, J. M., Zhang, Z. Y., Zhang, L., Li, B., & Jiang, C. J. (2016). Presurgical Evaluation of Pancreatic Cancer: A Comprehensive Imaging Comparison of CT Versus MRI. AJR. American journal of roentgenology, 206(3), 526–535. https://doi.org/10.2214/AJR.15.15236

Cheng, J., Novati, G., Pan, J., Bycroft, C., Žemgulytė, A., Applebaum, T., Pritzel, A., Wong, L. H., Zielinski, M., Sargeant, T., Schneider, R. G., Senior, A. W., Jumper, J., Hassabis, D., Kohli, P., & Avsec, Ž. (2023). Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science (New York, N.Y.), 381(6664), eadg7492. https://doi.org/10.1126/science.adg7492

Collins, S. (2024, January 17). 2024—First Year the US Expects More than 2M New Cases of Cancer. America Cancer Society. https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html

Columbia Engineering. (2025, August 19). Artificial Intelligence (AI) vs. Machine Learning. Columbia University. https://ai.engineering.columbia.edu/ai-vs-machine-learning/

Dinesh, M. G., Bacanin, N., Askar, S. S., & Abouhawwash, M. (2023). Diagnostic ability of deep learning in detection of pancreatic tumour. Scientific reports, 13(1), 9725. https://doi.org/10.1038/s41598-023-36886-8

Esfahani, M. S., Hamilton, E. G., Mehrmohamadi, M., Nabet, B. Y., Alig, S. K., King, D. A., Steen, C. B., Macaulay, C. W., Schultz, A., Nesselbush, M. C., Soo, J., Schroers-Martin, J. G., Chen, B., Binkley, M. S., Stehr, H., Chabon, J. J., Sworder, B. J., Hui, A. B., Frank, M. J., Moding, E. J., … Alizadeh, A. A. (2022). Inferring gene expression from cell-free DNA fragmentation profiles. Nature biotechnology, 40(4), 585–597. https://doi.org/10.1038/s41587-022-01222-4

Gallagher, K., Strobl, M. A. R., Park, D. S., Spoendlin, F. C., Gatenby, R. A., Maini, P. K., & Anderson, A. R. A. (2024). Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy. Cancer research, 84(11), 1929–1941. https://doi.org/10.1158/0008-5472.CAN-23-2040

Ghasemi, A., Hashtarkhani, S., Schwartz, D. L., & Shaban-Nejad, A. (2024). Explainable artificial intelligence in breast cancer detection and risk prediction: A systematic scoping review. Cancer innovation, 3(5), e136. https://doi.org/10.1002/cai2.136

Ginghina, O., Hudita, A., Zamfir, M., Spanu, A., Mardare, M., Bondoc, I., Buburuzan, L., Georgescu, S. E., Costache, M., Negrei, C., Nitipir, C., & Galateanu, B. (2022). Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Frontiers in oncology, 12, 856575. https://doi.org/10.3389/fonc.2022.856575

Gregory, A. (2025, May 30). New AI test can predict which men will benefit from prostate cancer drug. The Guardian. https://www.theguardian.com/society/2025/may/30/new-ai-test-can-predict-which-men-will-benefit-from-prostate-cancer-drug

Hajjar, M., Albaradei, S., & Aldabbagh, G. (2024). Machine Learning Approaches in Multi-Cancer Early Detection. Information, 15(10), 627. https://doi.org/10.3390/info15100627

Jasti, J., Zhong, H., Panwar, V., Jarmale, V., Miyata, J., Carrillo, D., Christie, A., Rakheja, D., Modrusan, Z., Kadel, E. E., 3rd, Beig, N., Huseni, M., Brugarolas, J., Kapur, P., & Rajaram, S. (2025). Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial. Nature Communications, 16, 2610. https://doi.org/10.1038/s41467-025-57717-6

Johns Hopkins Medicine. (2024, March 13). ‘Junk DNA’ No More: Johns Hopkins Investigators Develop Method of Identifying Cancers from Repeat Elements of Genetic Code. The Johns Hopkins University. https://www.hopkinsmedicine.org/news/newsroom/news-releases/2024/03/junk-dna-no-more-johns-hopkins-investigators-develop-method-of-identifying-cancers-from-repeat-elements-of-genetic-code

Lin, Y. L., Chang, P. C., Hsu, C., Hung, M. Z., Chien, Y. H., Hwu, W. L., Lai, F., & Lee, N. C. (2022). Comparison of GATK and DeepVariant by trio sequencing. Scientific reports, 12(1), 1809. https://doi.org/10.1038/s41598-022-05833-4

National Cancer Institute. (2025, May 7). Cancer statistics. U.S. Department of Health and Human Services. https://www.cancer.gov/about-cancer/understanding/statistics#:~:text=Cancer%20is%20among%20the%20leading,million%20cancer%2Drelated%20deaths%20worldwide

O'Connor, O., & McVeigh, T. P. (2025). Increasing use of artificial intelligence in genomic medicine for cancer care- the promise and potential pitfalls. BJC reports, 3(1), 20. https://doi.org/10.1038/s44276-025-00135-4

Popat, S., Januszewski, A., O'Brien, M., Ahmad, T., Lewanski, C., Dernedde, U., Jankowska, P., Mulatero, C., Shah, R., Hicks, J., Geldart, T., Cominos, M., Gray, G., Spicer, J., Bell, K., Roitt, S., Morris, C., Ngai, Y., Hughes, L., Hackshaw, A., … Wilson, W. (2025). Long term efficacy of first-line afatinib and the clinical utility of ctDNA monitoring in patients with suspected or confirmed EGFR mutant non-small cell lung cancer who were unsuitable for chemotherapy. British journal of cancer, 132(3), 245–252. https://doi.org/10.1038/s41416-024-02901-6

Verlaat, W., Snijders, P. J. F., Novianti, P. W., Wilting, S. M., De Strooper, L. M. A., Trooskens, G., Vandersmissen, J., Van Criekinge, W., Wisman, G. B. A., Meijer, C. J. L. M., Heideman, D. A. M., & Steenbergen, R. D. M. (2017). Genome-wide DNA Methylation Profiling Reveals Methylation Markers Associated with 3q Gain for Detection of Cervical Precancer and Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 23(14), 3813–3822. https://doi.org/10.1158/1078-0432.CCR-16-2641

Yoo, S. K., Fitzgerald, C. W., Cho, B. A., Fitzgerald, B. G., Han, C., Koh, E. S., Pandey, A., Sfreddo, H., Crowley, F., Korostin, M. R., Debnath, N., Leyfman, Y., Valero, C., Lee, M., Vos, J. L., Lee, A. S., Zhao, K., Lam, S., Olumuyide, E., Kuo, F., … Chowell, D. (2025). Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data. Nature medicine, 31(3), 869–880. https://doi.org/10.1038/s41591-024-03398-5

Downloads

Posted

2025-10-24