Preprint / Version 1

A Logistic Regression Model for Predicting Treatment Response to Elexacaftor/tezacaftor/ivacaftor in Cystic Fibrosis Patients with the F508Del Mutation

##article.authors##

  • Rishika Kurma Downingtown High School East Campus
  • Sahiti Marella Department of Dermatology, University of Michigan

DOI:

https://doi.org/10.58445/rars.2880

Keywords:

Cystic Fibrosis, Machine Learning, Personalized Medicine, Logistic Regression, Differential Gene Expression (DGE), Phenylalanine 508 Deletion (F508Del) Mutation, Elexacaftor/tezacaftor/ivacaftor (ETI), Cystic Fibrosis Transmembrane Regulator (CFTR)

Abstract

Cystic Fibrosis (CF) is a genetic disease that affects the lungs and other organs, causing mucus and other fluids to become excessively thick. The F508Del mutation is the most common variant of CF, and the Elexacaftor/tezacaftor/ivacaftor (ETI) therapy is frequently used to treat this specific mutation. Despite this recent advancement, patient variability leads to differences in individual response to ETI, regardless of sharing the F508Del mutation. This study addresses the gap in CF machine learning models to predict treatment response by developing a logistic regression model to detect the responsiveness of a CF patient following the ETI Treatment. Specifically, the research will answer the question: to what extent can a Logistic Regression model accurately classify responsive and unresponsive cases of CF patients with the F508Del Mutation following ETI treatment? The study implements a two-part quantitative method, including a Differential Gene Expression (DGE) Analysis experimental approach and a Logistic Regression Model evaluation approach. The DGE Analysis found that LDLR, TNF, and PSMD5 were the differentially expressed genes (DEGs) across the CF genetic data. The model evaluation leveraged a confusion matrix, McNemar’s Test, and an ROC Curve. The model achieved an 85.71% accuracy, a 66.67% sensitivity, and a 100% specificity. The Area Under the ROC Curve (AUC) was 91.67%. The study concluded these evaluation factors as statistically significant (p-value = 0.00548). These findings suggest that machine learning can assist in personalized treatment prediction, and further validation with larger and more diverse cohorts is warranted to enhance generalizability.

References

Bihler, H., Sivachenko, A., Millen, L., Bhatt, P., Patel, A. T., Chin, J., Bailey, V., Musisi, I., LaPan,

A., Allaire, N. E., Conte, J., Simon, N. R., Magaret, A. S., Raraigh, K. S., Cutting, G. R., Skach,

W. R., Bridges, R. J., Thomas, P. J., & Mense, M. (2024). In vitro modulator responsiveness of

CFTR variants found in people with cystic fibrosis. Journal of Cystic Fibrosis, 23(4),

-675. https://doi.org/10.1016/j.jcf.2024.02.006

Bilancia, M., Nigri, A., Cafarelli, B., & Di Bona, D. (2024). An interpretable cluster-based logistic

regression model, with application to the characterization of response to therapy in severe

eosinophilic asthma. The International Journal of Biostatistics, 20(2), 361-388.

https://doi.org/10.1515/ijb-2023-0061

Bisaso, K. R., Karungi, S. A., Kiragga, A., Mukonzo, J. K., & Castelnuovo, B. (2018). A

comparative study of logistic regression based machine learning techniques for prediction of

early virological suppression in antiretroviral initiating HIV patients. BMC Medical Informatics and

Decision Making, 18(1). https://doi.org/10.1186/s12911-018-0659-x

Chai, H., Zhou, X., Zhang, Z., Rao, J., Zhao, H., & Yang, Y. (2021). Integrating multi-omics data

through deep learning for accurate cancer prognosis prediction. Computers in Biology and

Medicine, 134, 104481. https://doi.org/10.1016/j.compbiomed.2021.104481

Cinek, O., Furstova, E., Novotna, S., Hubackova, K., Dousova, T., Borek-Dohalska, L., &

Drevinek, P. (2025). Gene expression profile of intestinal organoids from people with cystic

fibrosis upon exposure to elexacaftor/tezacaftor/ivacaftor. Journal of Cystic Fibrosis.

https://doi.org/10.1016/j.jcf.2024.09.005

De Jong, E., Garratt, L. W., Looi, K., Lee, A. H., Ling, K.-M., Smith, M. L., Falsafi, R., Sutanto, E.

N., Hillas, J., Iosifidis, T., Martinovich, K. M., Shaw, N. C., Montgomery, S. T., Kicic-Starcevich,

E., Lannigan, F. J., Vijayasekaran, S., Hancock, R. E., Stick, S. M., Kicic, A., & Arest, C. (2021).

Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene

response to rhinovirus. Journal of Cystic Fibrosis, 20(1), 97-105.

https://doi.org/10.1016/j.jcf.2020.07.004

Kerem, B., & Kerem, E. (1996). The molecular basis for disease variability in cystic fibrosis.

European Journal of Human Genetics, 4(2), 65-73. https://doi.org/10.1159/000472174

Khalifa, M., & Albadaway, M. (n.d.). Artificial Intelligence for Clinical Prediction: Exploring Key

Domains and Essential Functions. Computer Methods and Programs in Biomedicine Update.

https://doi.org/10.1016/j.cmpbup.2024.100148

Kleinfelder, K., Lotti, V., Eramo, A., Amato, F., Lo Cicero, S., Castelli, G., Spadaro, F., Farinazzo,

A., Dell'Orco, D., Preato, S., Conti, J., Rodella, L., Tomba, F., Cerofolini, A., Baldisseri, E.,

Bertini, M., Volpi, S., Villella, V. R., Esposito, S., . . . Sorio, C. (2023). In silico analysis and

theratyping of an ultra-rare CFTR genotype (W57G/A234D) in primary human rectal and nasal

epithelial cells. IScience, 26(11), 108180. https://doi.org/10.1016/j.isci.2023.108180

Lara-Reyna, S., Scambler, T., Holbrook, J., Wong, C., Jarosz-Griffiths, H. H., Martinon, F., Savic,

S., Peckham, D., & McDermott, M. F. (2019). Metabolic reprograming of cystic fibrosis

macrophages via the ire1α arm of the unfolded protein response results in exacerbated

inflammation. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01789

Learn About Cystic Fibrosis. (2024, October 30). American Lung Association. Retrieved April 21,

, from

https://www.lung.org/lung-health-diseases/lung-disease-lookup/cystic-fibrosis/learn-about-cystic-fibrosis

Leon, A. C. (1998). 3.12 - Descriptive and Inferential Statistics. In A. C. Leon (Author),

Comprehensive Clinical Psychology (pp. 243-285).

https://doi.org/10.1016/B0080-4270(73)00264-9

Lichstein, J., Riley, C., Keehn, A., Lyon, M., Maiese, D., Sarkar, D., & Scott, J. (2022). Children

with genetic conditions in the united states: Prevalence estimates from the 2016-2017 national

survey of children's health. Genetics in Medicine, 24(1), 170-178.

https://doi.org/10.1016/j.gim.2021.09.004

Lobo, I. (2008). Same Genetic Mutation, Different Genetic Disease Phenotype.

https://www.nature.com/scitable/topicpage/same-genetic-mutation-different-genetic-disease-phenotype-938/

Lopes-Pacheco, M. (2020). CFTR modulators: The changing face of cystic fibrosis in the era of

precision medicine. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01662

Mei-Zahav, M., Orenti, A., Jung, A., & Kerem, E. (n.d.). Variability in disease severity among

cystic fibrosis patients carrying residual-function variants: data from the European Cystic

Fibrosis Society Patient Registry. ERJ Open Research.

https://doi.org/10.1183/23120541.00587-2024

Rosati, D., Palmieri, M., Brunelli, G., Morrione, A., Iannelli, F., Frullanti, E., & Giordano, A.

(2024). Differential gene expression analysis pipelines and bioinformatic tools for the

identification of specific biomarkers: A review. Computational and Structural Biotechnology

Journal, 23, 1154-1168. https://doi.org/10.1016/j.csbj.2024.02.018

Sakellaropoulos, T., Vougas, K., Narang, S., Koinis, F., Kotsinas, A., Polyzos, A., Moss, T. J.,

Piha-Paul, S., Zhou, H., Kardala, E., Damianidou, E., Alexopoulos, L. G., Aifantis, I., Townsend,

P. A., Panayiotidis, M. I., Sfikakis, P., Bartek, J., Fitzgerald, R. C., Thanos, D., . . . Gorgoulis, V.

G. (2019). A deep learning framework for predicting response to therapy in cancer. Cell Reports,

(11), 3367-3373.e4. https://doi.org/10.1016/j.celrep.2019.11.017

Shi, Z., Zhang, K., Chen, T., Zhang, Y., Du, X., Zhao, Y., Shao, S., Zheng, L., Han, T., & Hong,

W. (2020). Transcriptional factor atf3 promotes liver fibrosis via activating hepatic stellate cells.

Cell Death & Disease, 11(12). https://doi.org/10.1038/s41419-020-03271-6

What is Cystic Fibrosis? (2023, November 21). National Heart, Lung, and Blood Institute.

Retrieved October 11, 2024, from https://www.nhlbi.nih.gov/health/cystic-fibrosis

Yue, M., Weiner, D. J., Gaietto, K. M., Rosser, F. J., Qoyawayma, C. M., Manni, M. L., Myerburg,

M. M., Pilewski, J. M., Celedón, J. C., Chen, W., & Forno, E. (2024). Nasal epithelium

transcriptomics predict clinical response to elexacaftor/tezacaftor/ivacaftor. American Journal of

Respiratory Cell and Molecular Biology, 71(6), 730-739.

https://doi.org/10.1165/rcmb.2024-0103oc

Additional Files

Posted

2025-08-16