A Logistic Regression Model for Predicting Treatment Response to Elexacaftor/tezacaftor/ivacaftor in Cystic Fibrosis Patients with the F508Del Mutation
DOI:
https://doi.org/10.58445/rars.2880Keywords:
Cystic Fibrosis, Machine Learning, Personalized Medicine, Logistic Regression, Differential Gene Expression (DGE), Phenylalanine 508 Deletion (F508Del) Mutation, Elexacaftor/tezacaftor/ivacaftor (ETI), Cystic Fibrosis Transmembrane Regulator (CFTR)Abstract
Cystic Fibrosis (CF) is a genetic disease that affects the lungs and other organs, causing mucus and other fluids to become excessively thick. The F508Del mutation is the most common variant of CF, and the Elexacaftor/tezacaftor/ivacaftor (ETI) therapy is frequently used to treat this specific mutation. Despite this recent advancement, patient variability leads to differences in individual response to ETI, regardless of sharing the F508Del mutation. This study addresses the gap in CF machine learning models to predict treatment response by developing a logistic regression model to detect the responsiveness of a CF patient following the ETI Treatment. Specifically, the research will answer the question: to what extent can a Logistic Regression model accurately classify responsive and unresponsive cases of CF patients with the F508Del Mutation following ETI treatment? The study implements a two-part quantitative method, including a Differential Gene Expression (DGE) Analysis experimental approach and a Logistic Regression Model evaluation approach. The DGE Analysis found that LDLR, TNF, and PSMD5 were the differentially expressed genes (DEGs) across the CF genetic data. The model evaluation leveraged a confusion matrix, McNemar’s Test, and an ROC Curve. The model achieved an 85.71% accuracy, a 66.67% sensitivity, and a 100% specificity. The Area Under the ROC Curve (AUC) was 91.67%. The study concluded these evaluation factors as statistically significant (p-value = 0.00548). These findings suggest that machine learning can assist in personalized treatment prediction, and further validation with larger and more diverse cohorts is warranted to enhance generalizability.
References
Bihler, H., Sivachenko, A., Millen, L., Bhatt, P., Patel, A. T., Chin, J., Bailey, V., Musisi, I., LaPan,
A., Allaire, N. E., Conte, J., Simon, N. R., Magaret, A. S., Raraigh, K. S., Cutting, G. R., Skach,
W. R., Bridges, R. J., Thomas, P. J., & Mense, M. (2024). In vitro modulator responsiveness of
CFTR variants found in people with cystic fibrosis. Journal of Cystic Fibrosis, 23(4),
-675. https://doi.org/10.1016/j.jcf.2024.02.006
Bilancia, M., Nigri, A., Cafarelli, B., & Di Bona, D. (2024). An interpretable cluster-based logistic
regression model, with application to the characterization of response to therapy in severe
eosinophilic asthma. The International Journal of Biostatistics, 20(2), 361-388.
https://doi.org/10.1515/ijb-2023-0061
Bisaso, K. R., Karungi, S. A., Kiragga, A., Mukonzo, J. K., & Castelnuovo, B. (2018). A
comparative study of logistic regression based machine learning techniques for prediction of
early virological suppression in antiretroviral initiating HIV patients. BMC Medical Informatics and
Decision Making, 18(1). https://doi.org/10.1186/s12911-018-0659-x
Chai, H., Zhou, X., Zhang, Z., Rao, J., Zhao, H., & Yang, Y. (2021). Integrating multi-omics data
through deep learning for accurate cancer prognosis prediction. Computers in Biology and
Medicine, 134, 104481. https://doi.org/10.1016/j.compbiomed.2021.104481
Cinek, O., Furstova, E., Novotna, S., Hubackova, K., Dousova, T., Borek-Dohalska, L., &
Drevinek, P. (2025). Gene expression profile of intestinal organoids from people with cystic
fibrosis upon exposure to elexacaftor/tezacaftor/ivacaftor. Journal of Cystic Fibrosis.
https://doi.org/10.1016/j.jcf.2024.09.005
De Jong, E., Garratt, L. W., Looi, K., Lee, A. H., Ling, K.-M., Smith, M. L., Falsafi, R., Sutanto, E.
N., Hillas, J., Iosifidis, T., Martinovich, K. M., Shaw, N. C., Montgomery, S. T., Kicic-Starcevich,
E., Lannigan, F. J., Vijayasekaran, S., Hancock, R. E., Stick, S. M., Kicic, A., & Arest, C. (2021).
Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene
response to rhinovirus. Journal of Cystic Fibrosis, 20(1), 97-105.
https://doi.org/10.1016/j.jcf.2020.07.004
Kerem, B., & Kerem, E. (1996). The molecular basis for disease variability in cystic fibrosis.
European Journal of Human Genetics, 4(2), 65-73. https://doi.org/10.1159/000472174
Khalifa, M., & Albadaway, M. (n.d.). Artificial Intelligence for Clinical Prediction: Exploring Key
Domains and Essential Functions. Computer Methods and Programs in Biomedicine Update.
https://doi.org/10.1016/j.cmpbup.2024.100148
Kleinfelder, K., Lotti, V., Eramo, A., Amato, F., Lo Cicero, S., Castelli, G., Spadaro, F., Farinazzo,
A., Dell'Orco, D., Preato, S., Conti, J., Rodella, L., Tomba, F., Cerofolini, A., Baldisseri, E.,
Bertini, M., Volpi, S., Villella, V. R., Esposito, S., . . . Sorio, C. (2023). In silico analysis and
theratyping of an ultra-rare CFTR genotype (W57G/A234D) in primary human rectal and nasal
epithelial cells. IScience, 26(11), 108180. https://doi.org/10.1016/j.isci.2023.108180
Lara-Reyna, S., Scambler, T., Holbrook, J., Wong, C., Jarosz-Griffiths, H. H., Martinon, F., Savic,
S., Peckham, D., & McDermott, M. F. (2019). Metabolic reprograming of cystic fibrosis
macrophages via the ire1α arm of the unfolded protein response results in exacerbated
inflammation. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01789
Learn About Cystic Fibrosis. (2024, October 30). American Lung Association. Retrieved April 21,
, from
Leon, A. C. (1998). 3.12 - Descriptive and Inferential Statistics. In A. C. Leon (Author),
Comprehensive Clinical Psychology (pp. 243-285).
https://doi.org/10.1016/B0080-4270(73)00264-9
Lichstein, J., Riley, C., Keehn, A., Lyon, M., Maiese, D., Sarkar, D., & Scott, J. (2022). Children
with genetic conditions in the united states: Prevalence estimates from the 2016-2017 national
survey of children's health. Genetics in Medicine, 24(1), 170-178.
https://doi.org/10.1016/j.gim.2021.09.004
Lobo, I. (2008). Same Genetic Mutation, Different Genetic Disease Phenotype.
Lopes-Pacheco, M. (2020). CFTR modulators: The changing face of cystic fibrosis in the era of
precision medicine. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01662
Mei-Zahav, M., Orenti, A., Jung, A., & Kerem, E. (n.d.). Variability in disease severity among
cystic fibrosis patients carrying residual-function variants: data from the European Cystic
Fibrosis Society Patient Registry. ERJ Open Research.
https://doi.org/10.1183/23120541.00587-2024
Rosati, D., Palmieri, M., Brunelli, G., Morrione, A., Iannelli, F., Frullanti, E., & Giordano, A.
(2024). Differential gene expression analysis pipelines and bioinformatic tools for the
identification of specific biomarkers: A review. Computational and Structural Biotechnology
Journal, 23, 1154-1168. https://doi.org/10.1016/j.csbj.2024.02.018
Sakellaropoulos, T., Vougas, K., Narang, S., Koinis, F., Kotsinas, A., Polyzos, A., Moss, T. J.,
Piha-Paul, S., Zhou, H., Kardala, E., Damianidou, E., Alexopoulos, L. G., Aifantis, I., Townsend,
P. A., Panayiotidis, M. I., Sfikakis, P., Bartek, J., Fitzgerald, R. C., Thanos, D., . . . Gorgoulis, V.
G. (2019). A deep learning framework for predicting response to therapy in cancer. Cell Reports,
(11), 3367-3373.e4. https://doi.org/10.1016/j.celrep.2019.11.017
Shi, Z., Zhang, K., Chen, T., Zhang, Y., Du, X., Zhao, Y., Shao, S., Zheng, L., Han, T., & Hong,
W. (2020). Transcriptional factor atf3 promotes liver fibrosis via activating hepatic stellate cells.
Cell Death & Disease, 11(12). https://doi.org/10.1038/s41419-020-03271-6
What is Cystic Fibrosis? (2023, November 21). National Heart, Lung, and Blood Institute.
Retrieved October 11, 2024, from https://www.nhlbi.nih.gov/health/cystic-fibrosis
Yue, M., Weiner, D. J., Gaietto, K. M., Rosser, F. J., Qoyawayma, C. M., Manni, M. L., Myerburg,
M. M., Pilewski, J. M., Celedón, J. C., Chen, W., & Forno, E. (2024). Nasal epithelium
transcriptomics predict clinical response to elexacaftor/tezacaftor/ivacaftor. American Journal of
Respiratory Cell and Molecular Biology, 71(6), 730-739.
Additional Files
Posted
Categories
License
Copyright (c) 2025 Rishika Kurma, Sahiti Marella

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.