Generative AI in Cancer
Improving Therapies Against Common Oncogenic Drivers
DOI:
https://doi.org/10.58445/rars.1675Keywords:
Computational Biology and Bioinformatics, Computational Biomodeling, Generative Artificial Intelligence, Genetics and Molecular Biology of Disease, Cancer Treatment and TherapiesAbstract
As early-onset cancer becomes increasingly common, the need for innovative therapeutic approaches in targeted therapy grows. Generative AI has emerged as a powerful tool for de novo drug design, offering the potential to create targeted therapies against challenging cancer driver mutations. These mutations, including TP53, KRAS, and EGFR, often confer gain-of-function effects that drive cancer progression and are notoriously difficult to target due to their unique biochemical properties. This review summarizes the shift from conventional drug design towards newfound generative AI models, highlighting their ability to optimize binding affinity, anticancer properties, and generate novel molecules against previously "undruggable" targets. This review explores how generative AI is revolutionizing the fight against prevalent cancer driver mutations, paving the way for personalized and effective cancer treatments.
References
(1) How does cancer start? https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts (accessed 2024-06-29).
(2) Ostroverkhova, D.; Przytycka, T. M.; Panchenko, A. R. Cancer Driver Mutations: Predictions and Reality. Trends Mol. Med. 2023, 29 (7), 554–566. https://doi.org/10.1016/j.molmed.2023.03.007.
(3) Li, Y.; Zhang, Y.; Li, X.; Yi, S.; Xu, J. Gain-of-Function Mutations: An Emerging Advantage for Cancer Biology. Trends Biochem. Sci. 2019, 44 (8), 659–674. https://doi.org/10.1016/j.tibs.2019.03.009.
(4) F, A.; H, A.-L.; S, C.-F.; S, T.; A, H.-P.; E, J.-L.; A, B.; V, I.; C, C. Passenger Mutations in Cancer Evolution. Cancer Rep. Rev. 2019, 3 (3). https://doi.org/10.15761/crr.1000188.
(5) Kao, P.-Y.; Yang, Y.-C.; Chiang, W.-Y.; Hsiao, J.-Y.; Cao, Y.; Aliper, A.; Ren, F.; Aspuru-Guzik, A.; Zhavoronkov, A.; Hsieh, M.-H.; Lin, Y.-C. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry. J. Chem. Inf. Model. 2023, 63 (11), 3307–3318. https://doi.org/10.1021/acs.jcim.3c00562.
(6) BPM, I. Exploring the Power of Generative AI in Drug Discovery. https://www.infosysbpm.com/blogs/generative-ai/exploring-the-power-of-generative-ai-in-drug-discovery.html#:~:text=Generative%20AI%20drugs%20are%20essentially,interactions%2C%20and%20clinical%20trial%20results (accessed 2024-06-29).
(7) Rougvie, A. E. Brenner’s Encyclopedia of Genetics (Second Edition). Artic. Titles: H 2013, No. Science2261984, 442–445. https://doi.org/10.1016/b978-0-12-374984-0.00700-2.
(8) Ellis, R. R. EGFR Mutations in NSCLC: What Does It Mean? https://www.webmd.com/lung-cancer/egfr-mutations-defined-nsclc (accessed 2024-07-24).
(9) Can Targeted Therapy for KRAS Mutations Double as Part of Immunotherapy? https://www.cancer.gov/news-events/cancer-currents-blog/2022/kras-targeted-drugs-as-immunotherapy (accessed 2024-07-24).
(10) Baugh, E. H.; Ke, H.; Levine, A. J.; Bonneau, R. A.; Chan, C. S. Why Are There Hotspot Mutations in the TP53 Gene in Human Cancers? Cell Death Differ. 2018, 25 (1), 154–160. https://doi.org/10.1038/cdd.2017.180.
(11) Roszkowska, K. A.; Piecuch, A.; Sady, M.; Gajewski, Z.; Flis, S. Gain of Function (GOF) Mutant P53 in Cancer—Current Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23 (21), 13287. https://doi.org/10.3390/ijms232113287.
(12) Waarts, M. R.; Stonestrom, A. J.; Park, Y. C.; Levine, R. L. Targeting Mutations in Cancer. J. Clin. Investig. 2022, 132 (8), e154943. https://doi.org/10.1172/jci154943.
(13) Kazandjian, D.; Blumenthal, G. M.; Yuan, W.; He, K.; Keegan, P.; Pazdur, R. FDA Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation–Positive Non–Small Cell Lung Cancer. Clin. Cancer Res. 2016, 22 (6), 1307–1312. https://doi.org/10.1158/1078-0432.ccr-15-2266.
(14) EGFR and Lung Cancer. https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/symptoms-diagnosis/biomarker-testing/egfr (accessed 2024-07-05).
(15) Holderfield, M.; Lee, B. J.; Jiang, J.; Tomlinson, A.; Seamon, K. J.; Mira, A.; Patrucco, E.; Goodhart, G.; Dilly, J.; Gindin, Y.; Dinglasan, N.; Wang, Y.; Lai, L. P.; Cai, S.; Jiang, L.; Nasholm, N.; Shifrin, N.; Blaj, C.; Shah, H.; Evans, J. W.; Montazer, N.; Lai, O.; Shi, J.; Ahler, E.; Quintana, E.; Chang, S.; Salvador, A.; Marquez, A.; Cregg, J.; Liu, Y.; Milin, A.; Chen, A.; Ziv, T. B.; Parsons, D.; Knox, J. E.; Klomp, J. E.; Roth, J.; Rees, M.; Ronan, M.; Cuevas-Navarro, A.; Hu, F.; Lito, P.; Santamaria, D.; Aguirre, A. J.; Waters, A. M.; Der, C. J.; Ambrogio, C.; Wang, Z.; Gill, A. L.; Koltun, E. S.; Smith, J. A. M.; Wildes, D.; Singh, M. Concurrent Inhibition of Oncogenic and Wild-Type RAS-GTP for Cancer Therapy. Nature 2024, 629 (8013), 919–926. https://doi.org/10.1038/s41586-024-07205-6.
(16) Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6 (1), 386. https://doi.org/10.1038/s41392-021-00780-4.
(17) Goodman, A. Second-Line Therapy With Adagrasib in KRAS G12C–Mutated Non–Small Cell Lung Cancer. https://ascopost.com/issues/july-10-2024/second-line-therapy-with-adagrasib-in-kras-g12c-mutated-non-small-cell-lung-cancer/#:~:text=Adagrasib%20remained%20superior%20to%20docetaxel,adagrasib%20vs%2050%25%20for%20docetaxel. (accessed 2024-08-20).
(18) Zhou, K. I.; Lin, C.; Tseng, C.-L.; Ramnath, N.; Dowell, J. E.; Kelley, M. J. Brief Report: Real-World Efficacy and Safety of Sotorasib in U.S. Veterans with KRAS G12C-Mutated NSCLC. JTO Clin. Res. Rep. 2024, 5 (5), 100670. https://doi.org/10.1016/j.jtocrr.2024.100670.
(19) RAS Initiative Drug Screening and Preclinical Research. https://www.cancer.gov/research/key-initiatives/ras/research-teams/drug-screening (accessed 2024-07-03).
(20) Danesi, R.; Fogli, S.; Indraccolo, S.; Re, M. D.; Tos, A. P. D.; Leoncini, L.; Antonuzzo, L.; Bonanno, L.; Guarneri, V.; Pierini, A.; Amunni, G.; Conte, P. Druggable Targets Meet Oncogenic Drivers: Opportunities and Limitations of Target-Based Classification of Tumors and the Role of Molecular Tumor Boards. ESMO Open 2021, 6 (2), 100040. https://doi.org/10.1016/j.esmoop.2020.100040.
(21) Paliwal, A.; Alam, M. A.; Sharma, P.; Jain, S.; Dhoundiyal, S. Revolutionizing Cancer Research and Drug Discovery: The Role of Artificial Intelligence and Machine Learning. Curr. Cancer Ther. Rev. 2024, 20. https://doi.org/10.2174/0115733947288355240305080236.
(22) Alvarado-Ortiz, E.; Cruz-López, K. G. de la; Becerril-Rico, J.; Sarabia-Sánchez, M. A.; Ortiz-Sánchez, E.; García-Carrancá, A. Mutant P53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front. Cell Dev. Biol. 2021, 8, 607670. https://doi.org/10.3389/fcell.2020.607670.
(23) Brown, S. Machine learning, explained. https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained (accessed 2024-07-04).
(24) What are Neural Networks and How Do They Work With Generative AI. https://shelf.io/blog/neural-networks-and-how-they-work-with-generative-ai/ (accessed 2024-06-30).
(25) Generative AI vs. Neural Networks: Exploring the Landscape. https://dasha.ai/en-us/blog/generative-ai-vs-neural-networks-exploring-the-landscape (accessed 2024-06-30).
(26) Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals 2023, 16 (2), 253. https://doi.org/10.3390/ph16020253.
(27) Duo, L.; Liu, Y.; Ren, J.; Tang, B.; Hirst, J. D. Artificial Intelligence for Small Molecule Anticancer Drug Discovery. Expert Opin. Drug Discov. 2024, 19 (8), 933–948. https://doi.org/10.1080/17460441.2024.2367014.
(28) Huggins, D. J.; Sherman, W.; Tidor, B. Rational Approaches to Improving Selectivity in Drug Design. J. Med. Chem. 2012, 55 (4), 1424–1444. https://doi.org/10.1021/jm2010332.
(29) Xie, X.; Yu, T.; Li, X.; Zhang, N.; Foster, L. J.; Peng, C.; Huang, W.; He, G. Recent Advances in Targeting the “Undruggable” Proteins: From Drug Discovery to Clinical Trials. Signal Transduct. Target. Ther. 2023, 8 (1), 335. https://doi.org/10.1038/s41392-023-01589-z.
(30) Dolma, L.; Muller, P. A. J. GOF Mutant P53 in Cancers: A Therapeutic Challenge. Cancers 2022, 14 (20), 5091. https://doi.org/10.3390/cancers14205091.
(31) Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep Learning in Drug Discovery. Drug Discov. Today 2018, 23 (6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039.
(32) Gillis, A. S. What is reinforcement learning? https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning (accessed 2024-07-01).
(33) Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012, 4 (2), 90–98. https://doi.org/10.1038/nchem.1243.
(34) Warner, E. Researchers use AI-powered database to design potential cancer drug in 30 days. https://www.utoronto.ca/news/researchers-use-ai-powered-database-design-potential-cancer-drug-30-days (accessed 2024-06-06).
(35) Strengths and limitations of AlphaFold2. https://www.ebi.ac.uk/training/online/courses/alphafold/an-introductory-guide-to-its-strengths-and-limitations/strengths-and-limitations-of-alphafold/ (accessed 2024-07-10).
(36) Jiang, K. U of T researchers used AI to discover a potential new cancer drug — in less than a month. https://www.thestar.com/news/canada/u-of-t-researchers-used-ai-to-discover-a-potential-new-cancer-drug-in-less/article_6400a3cc-f9b7-5eb9-b966-a91c071362f9.html (accessed 2024-06-20).
(37) Simulated chemistry: New AI platform designs tomorrow’s cancer drugs. https://www.sciencedaily.com/releases/2024/05/240506131601.htm (accessed 2024-06-21).
(38) Munson, B. P.; Chen, M.; Bogosian, A.; Kreisberg, J. F.; Licon, K.; Abagyan, R.; Kuenzi, B. M.; Ideker, T. De Novo Generation of Multi-Target Compounds Using Deep Generative Chemistry. Nat. Commun. 2024, 15 (1), 3636. https://doi.org/10.1038/s41467-024-47120-y.
(39) For the First Time, Quantum-Enhanced Generative AI Generates Viable Cancer Drug Candidates. https://zapata.ai/news/for-the-first-time-quantum-enhanced-generative-ai-generates-viable-cancer-drug-candidates/ (accessed 2024-06-30).
(40) Bhinder, B.; Gilvary, C.; Madhukar, N. S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11 (4), 900–915. https://doi.org/10.1158/2159-8290.cd-21-0090.
(41) Lorenzo, G.; Ahmed, S. R.; Hormuth, D. A.; Vaughn, B.; Kalpathy-Cramer, J.; Solorio, L.; Yankeelov, T. E.; Gomez, H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. arXiv 2023. https://doi.org/10.48550/arxiv.2308.14925.
(42) What is explainable AI? https://www.ibm.com/topics/explainable-ai (accessed 2024-07-02).
(43) Molnar, C. Interpretable Machine Learning: A Guide For Making Black Box Models Explainable; Independently published, 2022.
(44) Wodarz, D.; Newell, A. C.; Komarova, N. L. Passenger Mutations Can Accelerate Tumour Suppressor Gene Inactivation in Cancer Evolution. J. R. Soc. Interface 2018, 15 (143), 20170967. https://doi.org/10.1098/rsif.2017.0967.
(45) Our Technology Platform. https://www.formation.bio/technology (accessed 2024-07-11).
(46) Armstrong, A. New AI drug discovery powerhouse Xaira rises with $1B in funding. https://www.fiercebiotech.com/biotech/new-ai-drug-discovery-powerhouse-xaira-rises-1b-funding (accessed 2024-08-16).
Downloads
Posted
Categories
License
Copyright (c) 2024 Katherine Chen
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.