Preprint / Version 1

The Detrimental Effect of Mitochondrial Dysfunction On The Onset Of ATTR Amyloidosis

##article.authors##

  • Dilpreet Vohra Polygence
  • Colwyn Headley

DOI:

https://doi.org/10.58445/rars.996

Abstract

Transthyretin amyloidosis (ATTR) is a progressive and rare disease that is caused by a buildup of amyloid deposits of misfolded transthyretin (TTR) proteins in vital body organs such as the heart. Hepatocytes in the liver are the primary producers of these proteins. Groups of abnormal and misfolded TTR proteins called fibrils build up in the heart’s left ventricle causing difficulty in pumping blood to the rest of the body. The endoplasmic reticulum (ER) consists of a network of membranes in a cell’s cytoplasm that is the location of protein folding, and its dysfunction is implicated in ATTR pathogenesis. ER stress occurs when some factor leads to the accumulation of misfolded proteins. When stress in the ER increases, it can lead to energy depletion in the mitochondria. 

Mitochondria are membrane-bound organelles that generate chemical energy that the cell needs to function in the form of adenosine triphosphate (ATP). Mitochondrial dysfunction is a blanket term used to denote aberrant mitochondrial activity. ER stress is known to promote mitochondrial dysfunction and vice versa. However, in the context of ATTR, the link between mitochondrial dysfunction and ER stress is not entirely defined. Our current hypothesis is that mitochondrial dysfunction contributes to ER stress, which is a principal mediator of ATTR. Herein we will discuss the mechanistic links between ER stress and mitochondrial dysfunction in ATTR pathogenesis.

References

Ruberg, F. L., Grogan, M., Hanna, M., Kelly, J. W., & Maurer, M. S. (2019). Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(22), 2872–2891. https://doi.org/10.1016/j.jacc.2019.04.003 (1)

Jain A, Zahra F. Transthyretin Amyloid Cardiomyopathy (ATTR-CM) [Updated 2023 Apr 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK574531/ (2)

Liz, M. A., Coelho, T., Bellotti, V., Fernandez-Arias, M. I., Mallaina, P., & Obici, L. (2020). A Narrative Review of the Role of Transthyretin in Health and Disease. Neurology and therapy, 9(2), 395–402. https://doi.org/10.1007/s40120-020-00217-0 (3)

Díaz-Villanueva, J. F., Díaz-Molina, R., & García-González, V. (2015). Protein Folding and Mechanisms of Proteostasis. International journal of molecular sciences, 16(8), 17193–17230. https://doi.org/10.3390/ijms160817193 (4)

Cao, S. S., & Kaufman, R. J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & redox signaling, 21(3), 396–413. https://doi.org/10.1089/ars.2014.5851 (5)

Lagouge, M., & Larsson, N. G. (2013). The role of mitochondrial DNA mutations and free radicals in disease and ageing. Journal of internal medicine, 273(6), 529–543. https://doi.org/10.1111/joim.12055 (6)

Irabor, B., McMillan, J. M., & Fine, N. M. (2022). Assessment and Management of Older Patients With Transthyretin Amyloidosis Cardiomyopathy: Geriatric Cardiology, Frailty Assessment and Beyond. Frontiers in cardiovascular medicine, 9, 863179. https://doi.org/10.3389/fcvm.2022.863179 (7)

Gonzalez-Duarte, A., & Ulloa-Aguirre, A. (2021). A Brief Journey through Protein Misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). International journal of molecular sciences, 22(23), 13158. https://doi.org/10.3390/ijms222313158 (8)

Liz, M. A., Coelho, T., Bellotti, V., Fernandez-Arias, M. I., Mallaina, P., & Obici, L. (2020). A Narrative Review of the Role of Transthyretin in Health and Disease. Neurology and therapy, 9(2), 395–402. https://doi.org/10.1007/s40120-020-00217-0 (9)

Vieira, M. & Saraiva, M. (2014). Transthyretin: a multifaceted protein. BioMolecular Concepts, 5(1), 45-54. https://doi.org/10.1515/bmc-2013-0038

Duan, G., Li, Y., Ye, M., Liu, H., Wang, N., & Luo, S. (2023). The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. International journal of molecular sciences, 24(4), 3729. https://doi.org/10.3390/ijms24043729

Hepatic production of transthyretin L12P leads to intracellular lysosomal aggregates in a new somatic transgenic mouse model, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Volume 1832, Issue 8, 2013, Pages 1183-1193, https://doi.org/10.1016/j.bbadis.2013.04.001. (12)

Buxbaum, J. N., & Reixach, N. (2009). Transthyretin: the servant of many masters. Cellular and molecular life sciences : CMLS, 66(19), 3095–3101. https://doi.org/10.1007/s00018-009-0109-0 (13)

Schwarz, D. S., & Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and molecular life sciences : CMLS, 73(1), 79–94. https://doi.org/10.1007/s00018-015-2052-6 (14)

Sanguinetti, C., Minniti, M., Susini, V., Caponi, L., Panichella, G., Castiglione, V., Aimo, A., Emdin, M., Vergaro, G., & Franzini, M. (2022). The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines, 10(8), 1906. https://doi.org/10.3390/biomedicines10081906 (15)

Amado Carreras-Sureda, Philippe Pihán, Claudio Hetz, Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses, Cell Calcium, Volume 70,2018, Pages 24-31, (16)

Ana Rita Batista, Miguel Sena-Esteves, Maria João Saraiva, Araki, K., & Nagata, K. (2011). Protein folding and quality control in the ER. Cold Spring Harbor perspectives in biology, 3(11), a007526. https://doi.org/10.1101/cshperspect.a007526 (17)

Read, A., & Schröder, M. (2021). The Unfolded Protein Response: An Overview. Biology, 10(5), 384. https://doi.org/10.3390/biology10050384 (18)

Walter, F., O'Brien, A., Concannon, C. G., Düssmann, H., & Prehn, J. H. M. (2018). ER stress signaling has an activating transcription factor 6α (ATF6)-dependent "off-switch". The Journal of biological chemistry, 293(47), 18270–18284. https://doi.org/10.1074/jbc.RA118.002121 (19)

Qi, L., Tsai, B., & Arvan, P. (2017). New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends in cell biology, 27(6), 430–440. https://doi.org/10.1016/j.tcb.2016.12.002 (20)

Gariballa, N., & Ali, B. (2020, September 29). Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFβ Signaling Pathway: Future Therapeutic Perspectives. Frontiers. Retrieved December 30, 2023, from https://www.frontiersin.org/articles/10.3389/fmolb.2020.575608/full (21)

Kincaid, M. M., & Cooper, A. A. (2007). Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Molecular biology of the cell, 18(2), 455–463. https://doi.org/10.1091/mbc.e06-08-0696 (22)

Malhotra, J. D., & Kaufman, R. J. (2011). ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harbor perspectives in biology, 3(9), a004424. https://doi.org/10.1101/cshperspect.a004424 (24)

Patergnani, S., Suski, J. M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., Rimessi, A., Duszynski, J., Wieckowski, M. 25. R., & Pinton, P. (2011). Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell communication and signaling : CCS, 9, 19. https://doi.org/10.1186/1478-811X-9-19 (25)

Benhammouda, S., Vishwakarma, A., Gatti, P., & Germain, M. (2021). Mitochondria Endoplasmic Reticulum Contact Sites (MERCs): Proximity Ligation Assay as a Tool to Study Organelle Interaction. Frontiers in cell and developmental biology, 9, 789959. https://doi.org/10.3389/fcell.2021.789959 (26)

Ziegler, D.V., Martin, N. & Bernard, D. Cellular senescence links mitochondria-ER contacts and aging. Commun Biol 4, 1323 (2021). https://doi.org/10.1038/s42003-021-02840-5 (27)

Lim, D., Dematteis, G., & Tapella, L. (2023, October 30). Ca2+ handling at the mitochondria-ER contact sites in neurodegeneration. ScienceDirect. Retrieved December 30, 2023, from https://www.sciencedirect.com/science/article/abs/pii/S014341602100107X (28)

Yang, M., Li, C., & Yang, S. (2020, June 18). Mitochondria-Associated ER Membranes – The Origin Site of Autophagy. Frontiers. Retrieved December 30, 2023, from https://www.frontiersin.org/articles/10.3389/fcell.2020.00595/full (29)

Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., & Arbel, N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular aspects of medicine, 31(3), 227–285. https://doi.org/10.1016/j.mam.2010.03.002 (30)

Hayashi, T. (2019, July 1). The Sigma-1 Receptor in Cellular Stress Signaling. Frontiers. Retrieved December 30, 2023, from https://www.frontiersin.org/articles/10.3389/fnins.2019.00733/full (31)

Demaurex N, Frieden M, Arnaudeau S. ER Calcium and ER Chaperones: New Players in Apoptosis? In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6494/ (32)

Torres, M., Encina, G., Soto, C., & Hetz, C. (2011). Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Communicative & integrative biology, 4(3), 258–261. https://doi.org/10.4161/cib.4.3.15019 (33)

Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Mitochondria. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9896/ (34)

Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signalling, 24(5), 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008 (35)

Tirichen, H., Yaigoub, H., & Xu, W. (2021, March 8). Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Frontiers. Retrieved December 30, 2023, from https://www.frontiersin.org/articles/10.3389/fphys.2021.627837/full (36)

Raimondi, V., Ciccarese, F. & Ciminale, V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122, 168–181 (2020). https://doi.org/10.1038/s41416-019-0651-y (37)

Panda, S., Behera, S., Alam, M. F., & Syed, G. H. (2021). Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion, 58, 227–242. https://doi.org/10.1016/j.mito.2021.03.008 (38)

Yong, J., Bischof, H., Burgstaller, S., Siirin, M., Murphy, A., Malli, R., & Kaufman, R. J. (2019). Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2. eLife, 8, e49682. https://doi.org/10.7554/eLife.49682 (39)

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513 (40)

Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species - sources, functions, oxidative damage. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 48(284), 124–127. (41)

William M. Rosencrans, Megha Rajendran, Sergey M. Bezrukov, Tatiana K. Rostovtseva, VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease, Cell Calcium, Volume 94, 2021, 102356, ISSN 0143-4160, https://doi.org/10.1016/j.ceca.2021.102356. (42)

Stefanatos, R., & Sanz, A. (2018). The role of mitochondrial ROS in the aging brain. FEBS letters, 592(5), 743–758. https://doi.org/10.1002/1873-3468.12902 (43)

Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland J-P, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. International Journal of Molecular Sciences. 2020; 21(9):3351. https://doi.org/10.3390/ijms21093351 (44)

Schniertshauer, D., Gebhard, D., & Bergemann, J. (2018). Age-Dependent Loss of Mitochondrial Function in Epithelial Tissue Can Be Reversed by Coenzyme Q10. Journal of aging research, 2018, 6354680. https://doi.org/10.1155/2018/6354680 (45)

Gao, P., Yao, Z., & Zhu, Z. (2020, October 21). Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Frontiers. Retrieved December 30, 2023, from https://www.frontiersin.org/articles/10.3389/fcell.2020.604240/full (46)

Yong, J., Bischof, H., Burgstaller, S., Siirin, M., Murphy, A., Malli, R., & Kaufman, R. J. (2019). Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2. eLife, 8, e49682. https://doi.org/10.7554/eLife.49682 (47)

Ripa R, George T, Shumway KR, et al. Physiology, Cardiac Muscle. [Updated 2023 Jul 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572070/ (48)

Hood, C. J., Hendren, N. S., Pedretti, R., Roth, L. R., Saelices, L., & Grodin, J. L. (2022). Update on Disease-Specific Biomarkers in Transthyretin Cardiac Amyloidosis. Current heart failure reports, 19(5), 356–363. https://doi.org/10.1007/s11897-022-00570-1 (49)

Flynn, J. M., & Melov, S. (2013). SOD2 in mitochondrial dysfunction and neurodegeneration. Free radical biology & medicine, 62, 4–12. https://doi.org/10.1016/j.freeradbiomed.2013.05.027 (50)

Nicolson G. L. (2014). Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. Integrative medicine (Encinitas, Calif.), 13(4), 35–43.

National Human Genome Research Institute. (2024, January 24). Endoplasmic Reticulum (rough). Genome.gov. https://www.genome.gov/genetics-glossary/Endoplasmic-Reticulum-rough#:~:text=The%20endoplasmic%20reticulum%20can%20either,is%20to%20make%20those%20proteins.

Downloads

Posted

2024-03-04