Preprint / Version 1

Epigenetic Dysregulation in Cancer Stem Cells

##article.authors##

  • Sadhvi Reddy Student

DOI:

https://doi.org/10.58445/rars.979

Keywords:

Epigentic Dysregulation, Cancer Stem Cells, Post-Translational Modifications, Tumor, DNA

Abstract

Epigenetic dysregulation, itself, plays a role in gene expression, yet it does not change the DNA sequence. This type of dysregulation refers to abnormality within the structure of DNA and its proteins. Such modifications change gene expression, DNA accessibility, and chromatin structure, without changing the DNA sequence. Epigenetic change responses can play a significant role in rapid cancer growth. Modifications can be inherited directly from the parent or can be re-established through DNA replication– cancer-inducing ones would lead to the malignancy of normal stem cells into cancer stem cells, promoting the tumor. Epigenetic modifications (PTM),  allow the DNA to be modified in certain cells. These codes play a significant role in gene expression. This paper analyzes the lethal relationship between cancer stem cells (CSC) and epigenetic dysregulation. To determine such factors, the review will analyze multiple, published, research works that include various clinical trials and studies to correlate significant discoveries. 

References

Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics. 2013 Aug;8(8):839-48. doi: 10.4161/epi.25498. Epub 2013 Jun 27. PMID: 23880508; PMCID: PMC3883787.

Audia JE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016 Apr 1;8(4):a019521. doi: 10.1101/cshperspect.a019521. PMID: 27037415; PMCID: PMC4817802.

Berglund, A., Putney, R. M., Hamaidi, I., & Kim, S. (2021). Epigenetic dysregulation of immune-related pathways in cancer: bioinformatics tools and visualization. Experimental & Molecular Medicine. https://doi.org/10.1038/s12276-021-00612-z

Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018 Oct 15;837:8-24. doi: 10.1016/j.ejphar.2018.08.021. Epub 2018 Aug 18. PMID: 30125562.

Budhavarapu, V. N., Chavez, M., & Tyler, J. K. (2013). How is epigenetic information maintained through DNA replication? BMC. https://doi.org/10.1186/1756-8935-6-32

Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 2022 June 21;12(11):4935-4948. doi: 10.7150/thno.73223. PMID: 35836809; PMCID: PMC9274749.

Dawood S, Austin L, Cristofanilli M. Cancer stem cells: implications for cancer therapy. Oncology (Williston Park). 2014 Dec;28(12):1101-7, 1110. PMID: 25510809.

Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020 Jul 28;13(1):104. doi: 10.1186/s13045-020-00937-8. PMID: 32723346; PMCID: PMC7385862.

Epigenetic Writers and Erasers of Histones H2A, H2B, and H4. (2018). Cell Signaling Technology. https://www.cellsignal.com/pathways/epigenetic-histone-h2a-h2b-h4-pathway

EZH2 gene. (2016, March 1). MedlinePlus.https://medlineplus.gov/genetics/gene/ezh2/#references

Fessele KL, Wright F. Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control. Biol Res Nurs. 2018 Jan;20(1):103-110. doi: 10.1177/1099800417742967. Epub 2017 Nov 23. PMID: 29168388; PMCID: PMC6949967.

Imamura M, Hashino S, Tanaka J. Graft-versus-leukemia effect and its clinical implications. Leuk Lymphoma. 1996 Nov;23(5-6):477-92. doi: 10.3109/10428199609054857. PMID: 9031079.

Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011 Jun 1;90(3):430-40. doi: 10.1093/cvr/cvr097. Epub 2011 May 9. PMID: 21558279; PMCID: PMC3096308.

Lee, A. (2023, June 14). Inflammatory Disease Emergence Linked to Epigenetic Factors. NHSJS. https://nhsjs.com/2023/inflammatory-disease-emergence-linked-to-epigenetic-factors/

Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. Biology (Basel). 2014 Oct 22;3(4):670-723. doi: 10.3390/biology3040670. PMID: 25340699; PMCID: PMC4280507.

Mittal P, Roberts CWM. The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020 Jul;17(7):435-448. doi: 10.1038/s41571-020-0357-3. Epub 2020 Apr 17. PMID: 32303701; PMCID: PMC8723792.

Oberley LW, Oberley TD, Buettner GR. Cell differentiation, aging and cancer: the possible roles of superoxide and superoxide dismutases. Med Hypotheses. 1980 Mar;6(3):249-68. doi: 10.1016/0306-9877(80)90123-1. PMID: 6253771.

Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, Karki RG, Mathieu S, Möbitz H, Ntaganda R, Smith T, Visser M, Hill SE, Hurtado FK, Chenail G, Bhang HC, Bric A, Xiang K, Bushold G, Gilbert T, Vattay A, Dooley J, Costa EA, Park I, Li A, Farley D, Lounkine E, Yue QK, Xie X, Zhu X, Kulathila R, King D, Hu T, Vulic K, Cantwell J, Luu C, Jagani Z. Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers. J Med Chem. 2018 Nov 21;61(22):10155-10172. doi: 10.1021/acs.jmedchem.8b01318. Epub 2018 Oct 31. PMID: 30339381.

Pazos Sierra, A. (Ed.). (2021). Foundations of Colorectal Cancer. Elsevier Science.

Rosselló-Tortella, M., Bueno-Costa, A., Martínez-Verbo, L. et al. DNA methylation-associated dysregulation of transfer RNA expression in human cancer. Mol Cancer 21, 48 (2022). https://doi.org/10.1186/s12943-022-01532-w

Rycaj K, Tang DG. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Res. 2015 Oct 1;75(19):4003-11. doi:10.1158/0008-5472.CAN-15-0798. Epub 2015 Aug 19. PMID: 26292361; PMCID: PMC4756645.

Skvortsova I. Cancer Stem Cells: What Do We Know About Them? Cells. 2021 Jun 17;10(6):1528. doi: 10.3390/cells10061528. PMID: 34204391; PMCID: PMC8234152.

Stem Cell and Bone Marrow Transplants for Cancer. (2023, October 5). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/stem-cell-transplant

Straining R, Eighmy W. Tazemetostat: EZH2 Inhibitor. J Adv Pract Oncol. 2022 Mar;13(2):158-163. doi: 10.6004/jadpro.2022.13.2.7. Epub 2022 Mar 25. PMID: 35369397; PMCID: PMC8955562.

Tazemetostat for the Treatment of Patients With Recurrent/Refractory and/or Metastatic Malignant Peripheral Nerve Sheath Tumors, 2017

Verona, F., Pantina, V. D., Modica, C., Lo Iacono, M., D'Accardo, C., Porcelli, G., Turdo, A., Gaggianesi, M., Franco, S. D., Todaro, M., Veschi, V., & Stassi, G. (2022). Targeting epigenetic alterations in cancer stem cells. Frontiers in Molecular Medicine, 2. 10.3389/fmmed.2022.1011882

Virgil, H. (2021). Bristol Myers Squibb Withdraws Romidepsin R/R Peripheral T-Cell Lymphoma Indication For Lack of Clinical Benefit. Cancer Network. https://www.cancernetwork.com/view/bristol-myers-squibb-withdraws-romidepsin-r-r-peripheral-t-cell-lymphoma-indication-for-lack-of-clinical-benefit

Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol. 2020 Aug 7;11:1280. doi: 10.3389/fimmu.2020.01280. PMID: 32849491; PMCID: PMC7426526.

What is Epigenetics? | CDC. (n.d.). Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/epigenetics.htm

Xie Y, Zhou JJ, Zhao Y, Zhang T, Mei LZ. H. pylori modifies methylation of global genomic DNA and the gastrin gene promoter in gastric mucosal cells and gastric cancer cells. Microb Pathog. 2017 Jul;108:129-136. doi: 10.1016/j.micpath.2017.05.003. Epub 2017 May 3. PMID: 28478202.

Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012 Dec;44(12):2144-51. doi: 10.1016/j.biocel.2012.08.022. Epub 2012 Sep 2. PMID: 22981632; PMCID: PMC3496019.

Downloads

Posted

2024-02-24