Optimizing Pharmaceutical Wastewater Treatment: A Comprehensive Review and Unique Experimental Insight
DOI:
https://doi.org/10.58445/rars.976Keywords:
Pharmaceutical Wastewater, Environmental Science, EcologyAbstract
The increased production and consumption of pharmaceuticals to combat evolving diseases, bacterial infection, and generally as a treatment for elusive ailments (i.e. psychiatric treatments for Alzheimer's), results in higher concentrations of pharmaceuticals in the natural environment both from production processes and human waste. This issue, while seen at a greater effect on a local level (concerning the production facility), can potentially become a global issue through the alteration of ecosystems. Here, we analyze conventional treatments for pharmaceutical wastewater treatment, which are classed under Advanced Oxidation Processes, Bio-activated methods, and treatments that involve separation methods. These treatments are then evaluated for their pros and cons when dealing with pharmaceutical wastewater. We conclude by creating an experimental treatment solution after we evaluate the standard wastewater treatment solutions that are considered staples and proven to work in breaking down organic compounds.
References
Deegan AM, Shaik B, Nolan K, et al. Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol. 2011;8(3):649-666. doi:10.1007/BF03326250
Stumm-Zollinger E, Fair GM. Biodegradation of Steroid Hormones. J Water Pollut Control Fed. 1965;37(11):1506-1510.
Renita AA, Senthil Kumar P, Srinivas S, Priyadharshini S, Karthika M. A review on analytical methods and treatment techniques of pharmaceutical wastewater. DESALINATION WATER Treat. 2017;87:160-178. doi:10.5004/dwt.2017.21311
Ganiyu SO, Van Hullebusch ED, Cretin M, Esposito G, Oturan MA. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep Purif Technol. 2015;156:891-914. doi:10.1016/j.seppur.2015.09.059
Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. 2002;131(1-2):5-17. doi:10.1016/S0378-4274(02)00041-3
Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I) Groundwater. Sci Total Environ. 2008;402(2-3):192-200. doi:10.1016/j.scitotenv.2008.04.028
Madukasi EI, Dai X, He C, Zhou J. Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int J Environ Sci Technol. 2010;7(1):165-174. doi:10.1007/BF03326128
Ankley GT, Brooks BW, Huggett DB, Sumpter AJP. Repeating History: Pharmaceuticals in the Environment. Environ Sci Technol. 2007;41(24):8211-8217. doi:10.1021/es072658j
Fent K, Weston A, Caminada D. Ecotoxicology of human pharmaceuticals. Aquat Toxicol. 2006;76(2):122-159. doi:10.1016/j.aquatox.2005.09.009
Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M. Fate of pharmaceuticals and personal care products in wastewater treatment plants – Conception of a database and first results. Environ Pollut. 2009;157(5):1721-1726. doi:10.1016/j.envpol.2008.11.045
Adeleye AS, Xue J, Zhao Y, et al. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J Hazard Mater. 2022;424:127284. doi:10.1016/j.jhazmat.2021.127284
Chopra S, Kumar D. Pharmaceuticals and Personal Care Products (PPCPs) as Emerging Environmental Pollutants: Toxicity and Risk Assessment. In: Gahlawat SK, Duhan JS, Salar RK, Siwach P, Kumar S, Kaur P, eds. Advances in Animal Biotechnology and Its Applications. Springer; 2018:337-353. doi:10.1007/978-981-10-4702-2_19
Corcoran J, Winter MJ, Tyler CR. Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Crit Rev Toxicol. 2010;40(4):287-304. doi:10.3109/10408440903373590
Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem. 2009;28(12):2522-2527. doi:10.1897/09-073.1
Aydin S, Ince B, Ince O. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. Water Res. 2015;83:337-344. doi:10.1016/j.watres.2015.07.007
Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ. 2013;447:345-360. doi:10.1016/j.scitotenv.2013.01.032
Wang JL, Xu LJ. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit Rev Environ Sci Technol. 2012;42(3):251-325. doi:10.1080/10643389.2010.507698
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Govarthanan M, Karmegam N. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environ Technol Innov. 2021;23:101757. doi:10.1016/j.eti.2021.101757
Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. ACS Publications. doi:10.1021/cr00018a003
Stapleton DR, Emery RJ, Mantzavinos D, Papadaki M. Photolytic Destruction of Halogenated Pyridines in Wastewaters. Process Saf Environ Prot. 2006;84(4):313-316. doi:10.1205/psep.05164
Jing Z, Cao S. Combined Application of UV Photolysis and Ozonation with Biological Aerating Filter in Tertiary Wastewater Treatment. Int J Photoenergy. 2012;2012:1-6. doi:10.1155/2012/140605
Ryan CC, Tan DT, Arnold WA. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Res. 2011;45(3):1280-1286. doi:10.1016/j.watres.2010.10.005
Benotti MJ, Stanford BD, Wert EC, Snyder SA. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009;43(6):1513-1522. doi:10.1016/j.watres.2008.12.049
Feng X, Ding S, Tu J, Wu F, Deng N. Degradation of estrone in aqueous solution by photo-Fenton system. Sci Total Environ. 2005;345(1):229-237. doi:10.1016/j.scitotenv.2004.11.008
Kremer ML. Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys. 1999;1(15):3595-3605. doi:10.1039/a903915e
Leónidas A. Pérez-Estrada †, Sixto Malato †, Wolfgang Gernjak †, et al. Photo-Fenton Degradation of Diclofenac: Identification of Main Intermediates and Degradation Pathway. ACS Publications. doi:10.1021/es050794n
Kavitha V, Palanivelu K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere. 2004;55(9):1235-1243. doi:10.1016/j.chemosphere.2003.12.022
Shemer H, Kunukcu YK, Linden KG. Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere. 2006;63(2):269-276. doi:10.1016/j.chemosphere.2005.07.029
Muñoz I, Peral J, Antonio Ayllón J, Malato S, Passarinho P, Domènech X. Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Res. 2006;40(19):3533-3540. doi:10.1016/j.watres.2006.08.001
Giri AS, Golder AK. Fenton, Photo-Fenton, H 2 O 2 Photolysis, and TiO 2 Photocatalysis for Dipyrone Oxidation: Drug Removal, Mineralization, Biodegradability, and Degradation Mechanism. Ind Eng Chem Res. 2014;53(4):1351-1358. doi:10.1021/ie402279q
Araña J, Herrera Melián JA, Doña Rodrı́guez JM, et al. TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catal Today. 2002;76(2):279-289. doi:10.1016/S0920-5861(02)00226-2
Ternes TA, Stüber J, Herrmann N, et al. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003;37(8):1976-1982. doi:10.1016/S0043-1354(02)00570-5
Lin YH. Molecular weight distribution of organic matter by ozonation and biofiltration. Water Sci Technol J Int Assoc Water Pollut Res. 2012;66:2604-2612. doi:10.2166/wst.2012.484
Uddin Z, Ahmad F, Ullah T, et al. Recent trends in water purification using electrospun nanofibrous membranes. Int J Environ Sci Technol. 2021;19. doi:10.1007/s13762-021-03603-9
Cokgor EU, Alaton IA, Karahan O, Dogruel S, Orhon D. Biological treatability of raw and ozonated penicillin formulation effluent. J Hazard Mater. 2004;116(1):159-166. doi:10.1016/j.jhazmat.2004.08.011
Nakada N, Shinohara H, Murata A, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007;41(19):4373-4382. doi:10.1016/j.watres.2007.06.038
Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from wastewaters: The ozonation of amoxicillin. J Hazard Mater. 2005;122(3):243-250. doi:10.1016/j.jhazmat.2005.03.004
Parker KM, Zeng T, Harkness J, Vengosh A, Mitch WA. Enhanced Formation of Disinfection Byproducts in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environ Sci Technol. 2014;48(19):11161-11169. doi:10.1021/es5028184
Schmidt CK, Brauch HJ. N,N-Dimethylsulfamide as Precursor for N-Nitrosodimethylamine (NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment. Environ Sci Technol. 2008;42(17):6340-6346. doi:10.1021/es7030467
Larsen TA, Lienert J, Joss A, Siegrist H. How to avoid pharmaceuticals in the aquatic environment. J Biotechnol. 2004;113(1-3):295-304. doi:10.1016/j.jbiotec.2004.03.033
Oz NA, Ince O, Ince BK. Effect of Wastewater Composition on Methanogenic Activity in an Anaerobic Reactor. J Environ Sci Health Part A. 2004;39(11-12):2941-2953. doi:10.1081/LESA-200034284
Sreekanth D, Sivaramakrishna D, Himabindu V, Anjaneyulu Y. Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour Technol. 2009;100(9):2534-2539. doi:10.1016/j.biortech.2008.11.028
LaPara TM, Nakatsu CH, Pantea LM, Alleman JE. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 2002;36(3):638-646. doi:10.1016/S0043-1354(01)00277-9
Suman Raj DS, Anjaneyulu Y. Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process Biochem. 2005;40(1):165-175. doi:10.1016/j.procbio.2003.11.056
Pandey A, Singh R. Industrial Waste Water Treatment by Membrane Bioreactor System. Elixir Chem Eng. 2014;70:23772-23777.
Loganathan P, Kandasamy J, Ratnaweera H, Vigneswaran S. Submerged membrane/adsorption hybrid process in water reclamation and concentrate management—a mini review. Environ Sci Pollut Res. 2022;30(15):42738-42752. doi:10.1007/s11356-022-23229-9
Bogush AA, Kim JK, Campos LC. Removal of arsenic, nitrate, persistent organic pollutants and pathogenic microbes from water using redox-reactive minerals. In: Ahmed IAM, ed. Redox-Reactive Minerals: Properties, Reactions and Applications in Clean Technologies. 1st ed. Mineralogical Society of Great Britain & Ireland; 2007:405-442. doi:10.1180/EMU-notes.17.12
Yu Z, Peldszus S, Anderson WB, Huck PM. Adsorption of Selected Pharmaceuticals and Endocrine Disrupting Substances by GAC at Low Concentration Levels.
Ighalo JO, Omoarukhe FO, Ojukwu VE, Iwuozor KO, Igwegbe CA. Cost of adsorbent preparation and usage in wastewater treatment: A review. Clean Chem Eng. 2022;3:100042. doi:10.1016/j.clce.2022.100042
Guo Y, Qi PS, Liu YZ. A Review on Advanced Treatment of Pharmaceutical Wastewater. IOP Conf Ser Earth Environ Sci. 2017;63:012025. doi:10.1088/1755-1315/63/1/012025
Singh R. Chapter 3 - Hybrid Membrane Systems – Applications and Case Studies. In: Singh R, ed. Membrane Technology and Engineering for Water Purification (Second Edition). Butterworth-Heinemann; 2015:179-281. doi:10.1016/B978-0-444-63362-0.00003-3
Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci. 2018;532:236-260. doi:10.1016/j.jcis.2018.07.118
Syafiqah E, Jamely A, Ismail AF. Remediation of Thorium (IV) from Wastewater: Current Status and Way Forward. Sep Purif Rev. 2019:1-26. doi:10.1080/15422119.2019.1639519
Gerrity D, Benotti M, Reckhow D, Snyder S. Pharmaceuticals and endocrine disrupting compounds in drinking water. Biophys-Chem Process Anthropog Org Compd Environ Syst. Published online January 1, 2011:233-250. doi:10.1002/9780470944479.ch10
Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl Catal B Environ. 2017;209:358-371. doi:10.1016/j.apcatb.2017.03.011
Obotey Ezugbe E, Rathilal S. Membrane Technologies in Wastewater Treatment: A Review. Membranes. 2020;10(5):89. doi:10.3390/membranes10050089
Maartens A, Swart P, Jacobs EP. An enzymatic approach to the cleaning of ultrafiltration membranes fouled in abattoir effluent. J Membr Sci. 1996;119(1):9-16. doi:10.1016/0376-7388(96)00015-4
Popović S, Djurić M, Milanović S, Tekić MN, Lukić N. Application of an ultrasound field in chemical cleaning of ceramic tubular membrane fouled with whey proteins. J Food Eng. 2010;101(3):296-302. doi:10.1016/j.jfoodeng.2010.07.012
Maskooki A, Mortazavi SA, Maskooki A. Cleaning of spiralwound ultrafiltration membranes using ultrasound and alkaline solution of EDTA. Desalination. 2010;264(1-2):63-69. doi:10.1016/j.desal.2010.07.005
Çalık Ç, Çifçi Dİ. Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater. J Environ Manage. 2022;304:114234. doi:10.1016/j.jenvman.2021.114234
Downloads
Posted
Categories
License
Copyright (c) 2024 Arnav Muthali
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.