Preprint / Version 1

Microgravity and Low-Shear Modeled Microgravity Effects on Dynamics of Salmonella

Implications for Space Travel and Colonization

##article.authors##

  • Sharbani Patnaik Student

DOI:

https://doi.org/10.58445/rars.948

Keywords:

Microbiology, Salmonella

Abstract

Salmonella, a well-known pathogenic bacterium, experiences particular difficulties and stressors in space, specifically in varying gravity levels. Significant differences in the growth rate, morphology, gene expression, pathogenicity, and biofilm formation of Salmonella spp. have been found in studies examining the dynamics of the organism under microgravity (MG) and low-shear modeled microgravity (LSMMG) settings. Concerns are raised about the possibility of increased pathogenicity and weakened control of Salmonella infections during space missions as a result of these changes in Salmonella behavior in MG and LSMMG environments. Developing solutions to reduce the hazards associated with Salmonella-related infections in space requires an understanding of the mechanisms enabling Salmonella adaptation to MG and LSMMG settings. The results of these investigations also have wider ramifications for how we comprehend microbial behavior and adaptation to extreme environments. In this review, Examine the effects of microgravity and low-shear modeled microgravity conditions on the dynamics of Salmonella and the potential implications of MG and LSMMG-induced changes in Salmonella for future space travel and colonization.

 

References

Acharjee SA, Bharali P, Gogoi B, Sorhie V, Walling B, Alemtoshi. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution. Water Air Soil Pollut. 2023;234(1):21. doi: 10.1007/s11270-022-06029-2. Epub 2022 Dec 29. PMID: 36593989; PMCID: PMC9797907.

Aleksandrowicz A, Carolak E, Dutkiewicz A, Błachut A, Waszczuk W, Grzymajlo K. Better together-Salmonella biofilm-associated antibiotic resistance. Gut Microbes. 2023 Jan-Dec;15(1):2229937. doi: 10.1080/19490976.2023.2229937. PMID: 37401756; PMCID: PMC10321201.

Barraud N, Létoffé S, Beloin C, Vinh J, Chiappetta G, Ghigo JM. Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress. NPJ Biofilms Microbiomes. 2021 Apr 13;7(1):34. doi: 10.1038/s41522-021-00203-w. PMID: 33850153; PMCID: PMC8044216.

Barrila J, Yang J, Franco Meléndez KP, Yang S, Buss K, Davis TJ, Aronow BJ, Bean HD, Davis RR, Forsyth RJ, Ott CM, Gangaraju S, Kang BY, Hanratty B, Nydam SD, Nauman EA, Kong W, Steel J, Nickerson CA. Spaceflight Analogue Culture Enhances the Host-Pathogen Interaction Between Salmonella and a 3-D Biomimetic Intestinal Co-Culture Model. Front Cell Infect Microbiol. 2022 May 31;12:705647. doi: 10.3389/fcimb.2022.705647. PMID: 35711662; PMCID: PMC9195300.

Centers for Disease Control and Prevention. “Salmonella”. https://www.cdc.gov/salmonella/index.html. Accessed 11 Sep. 2023.

Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome. 2015 Oct 27;3:50. doi: 10.1186/s40168-015-0116-3. PMID: 26502721; PMCID: PMC4624184.

Clough, Erin, et al. “Mitochondrial Dynamics in SARS-Cov2 Spike Protein Treated Human Microglia: Implications for Neuro-Covid.” Journal of Neuroimmune Pharmacology : The Official Journal of the Society on NeuroImmune Pharmacology, U.S. National Library of Medicine, Dec. 2021, www.ncbi.nlm.nih.gov/pmc/articles/PMC8487226/.

Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol. 2010 Jun;12(6):1545-64. doi: 10.1111/j.1462-2920.2010.02184.x. Epub 2010 Mar 5. PMID: 20236169.

E. John Threlfall, Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections, FEMS Microbiology Reviews, Volume 26, Issue 2, June 2002, Pages 141–148, https://doi-org.stanford.idm.oclc.org/10.1111/j.1574-6976.2002.tb00606.x

Fukuda S, Yasu T, Predescu DN, Schmid-Schönbein GW. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res. 2000 Jan 7;86(1):E13-8. doi: 10.1161/01.res.86.1.e13. PMID: 10625314.

Helena, Rosado, et al. “Low-Shear Modelled Microgravity Alters Expression of Virulence Determinants of Staphylococcus Aureus.” Acta Astronautica, Pergamon, 5 July 2009, www.sciencedirect.com/science/article/abs/pii/S0094576509003440.

Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010 Mar;74(1):121-56. doi: 10.1128/MMBR.00016-09. PMID: 20197502; PMCID: PMC2832349.

Jiang, Fangjie, et al. "DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of Rev1 and Polq in mouse embryonic stem cells." Proceedings of the National Academy of Sciences 120.30 (2023): e2305187120.

Juergensmeyer MA, Juergensmeyer EA, Guikema JA. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci Technol. 1999;12(1):41-7. PMID: 11543359

Karmali F, Shelhamer M. The dynamics of parabolic flight: flight characteristics and passenger percepts. Acta Astronaut. 2008 Sep;63(5-6):594-602. doi: 10.1016/j.actaastro.2008.04.009. PMID: 19727328; PMCID: PMC2598414.

Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity. 2023 Jun 21;9(1):47. doi: 10.1038/s41526-023-00285-0. PMID: 37344487; PMCID: PMC10284894.

Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr. 2016 Dec 26;4:140. doi: 10.3389/fped.2016.00140. PMID: 28083527; PMCID: PMC5183626.

Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, Hammond T, Pierson DL. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods. 2003 Jul;54(1):1-11. doi: 10.1016/s0167-7012(03)00018-6. PMID: 12732416.

Pacello F, Rotilio G, Battistoni A. Low-Shear Modeled Microgravity Enhances Salmonella Enterica Resistance to Hydrogen Peroxide Through a Mechanism Involving KatG and KatN. Open Microbiol J. 2012;6:53-64. doi: 10.2174/1874285801206010053. Epub 2012 Jul 27. PMID: 22888375; PMCID: PMC3414715.

Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? Astrobiology. 2022 Feb;22(2):210-224. doi: 10.1089/ast.2021.0009. Epub 2022 Jan 3. PMID: 34981957; PMCID: PMC8861927.

Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, Jejelowo O. Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol. 2010 Jan;85(4):885-91. doi: 10.1007/s00253-009-2237-8. Epub 2009 Oct 22. PMID: 19847423; PMCID: PMC2804794.

Tangerina MMP, Furtado LC, Leite VMB, Bauermeister A, Velasco-Alzate K, Jimenez PC, Garrido LM, Padilla G, Lopes NP, Costa-Lotufo LV, Pena Ferreira MJ. Metabolomic study of marine Streptomyces sp.: Secondary metabolites and the production of potential anticancer compounds. PLoS One. 2020 Dec 21;15(12):e0244385. doi: 10.1371/journal.pone.0244385. PMID: 33347500; PMCID: PMC7751980.

Taylor PW. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist. 2015 Jul 30;8:249-62. doi: 10.2147/IDR.S67275. PMID: 26251622; PMCID: PMC4524529.

Venkateswaran, Kasthuri et al. “International Space Station environmental microbiome - microbial inventories of ISS filter debris.” Applied microbiology and biotechnology vol. 98,14 (2014): 6453-66. doi:10.1007/s00253-014-5650-6.

Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol. 2015 Jan 21;5:791. doi: 10.3389/fmicb.2014.00791. PMID: 25653644; PMCID: PMC4301013.

Wilson, James W., et al. “Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight.” PLOS ONE, Public Library of Science, journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0003923. Accessed 11 Sept. 2023.

Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Pierson DL, Nickerson CA. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13807-12. doi: 10.1073/pnas.212387899. Epub 2002 Oct 7. PMID: 12370447; PMCID: PMC129779.

Downloads

Posted

2024-02-03

Categories