Analysis of the Therapeutic Strategies Used to Treat ALS Caused by TDP-43 Aggregation
DOI:
https://doi.org/10.58445/rars.884Keywords:
neuroscience, biology, geneticsAbstract
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder that impairs motor functions, affects 1 in 50,000 people in the world, and almost 90% of patients diagnosed do not have any family history of the disease. ALS is a debilitating disease due to the limited effectiveness of treatments for most patients. However, researchers were able to identify one protein that malfunctions in almost 97% of patients: TDP-43. TDP-43 is a protein that regulates the process of transcription, and it is known to aggregate in the neurons of patients with ALS. Many researchers have decided to focus their therapeutic strategies on the protein aggregation using genetic therapies or small molecules. This study focuses on analyzing the benefits and limitations of the therapeutic strategies used to treat ALS caused by TDP-43 aggregation and identifying which method holds the most promise to target this proteinopathy.
References
Amyotrophic Lateral Sclerosis (ALS) | National Institute of Neurological Disorders and Stroke. (n.d.). Retrieved December 10, 2023, from https://www.ninds.nih.gov/health-information/disorders/amyotrophic-lateral-sclerosis-als
Statland, J. M., Barohn, R. J., McVey, A. L., Katz, J. S., & Dimachkie, M. M. (2015). Patterns of weakness, classification of motor neuron disease, and clinical diagnosis of sporadic amyotrophic lateral sclerosis. Neurologic Clinics, 33(4), 735–748. https://doi.org/10.1016/j.ncl.2015.07.006
Pajarillo, E., Rizor, A., Lee, J., Aschner, M., & Lee, E. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161, 107559. https://doi.org/10.1016/j.neuropharm.2019.03.002
Doble, A. (1996). The pharmacology and mechanism of action of riluzole. Neurology, 47(6 Suppl 4), S233-41. https://doi.org/10.1212/wnl.47.6_suppl_4.233s
Deflorio, C., Palma, E., Conti, L., Roseti, C., Manteca, A., Giacomelli, E., Catalano, M., Limatola, C., Inghilleri, M., & Grassi, F. (2012). Riluzole blocks human muscle acetylcholine receptors. The Journal of Physiology, 590(10), 2519–2528. https://doi.org/10.1113/jphysiol.2012.230201
Riluzole. (2012). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases.
Roch-Torreilles, I., Camu, W., & Hillaire-Buys, D. (2000). [Adverse efects of riluzole (Rilutek) in the treatment of amyotrophic lateral sclerosis]. Therapie, 55(2), 303–312.
Witzel, S., Maier, A., Steinbach, R., Grosskreutz, J., Koch, J. C., Sarikidi, A., Petri, S., Günther, R., Wolf, J., Hermann, A., Prudlo, J., Cordts, I., Lingor, P., Löscher, W. N., Kohl, Z., Hagenacker, T., Ruckes, C., Koch, B., Spittel, S., … German Motor Neuron Disease Network (MND-NET). (2022). Safety and Effectiveness of Long-term Intravenous Administration of Edaravone for Treatment of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurology, 79(2), 121–130. https://doi.org/10.1001/jamaneurol.2021.4893
Genge, A., Pattee, G. L., Sobue, G., Aoki, M., Yoshino, H., Couratier, P., Lunetta, C., Petri, S., Selness, D., Bidani, S., Hirai, M., Sakata, T., Salah, A., Apple, S., Wamil, A., Kalin, A., & Jackson, C. E. (2023). Oral edaravone demonstrated a favorable safety profile in patients with amyotrophic lateral sclerosis after 48 weeks of treatment. Muscle & Nerve, 67(2), 124–129. https://doi.org/10.1002/mus.27768
Pharmacoeconomic Review Report: Edaravone (Radicava): (Mitsubishi Tanabe Pharma Corporation): Indication: For the treatment of Amyotrophic Lateral Sclerosis (ALS). (2019). Canadian Agency for Drugs and Technologies in Health.
Boutillier, A.-L., Tzeplaeff, L., & Dupuis, L. (2019). The dark side of HDAC inhibition in ALS. EBioMedicine, 41, 38–39. https://doi.org/10.1016/j.ebiom.2019.02.039
Bennett, S. A., Tanaz, R., Cobos, S. N., & Torrente, M. P. (2019). Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Translational Research, 204, 19–30. https://doi.org/10.1016/j.trsl.2018.10.002
Paganoni, S., Macklin, E. A., Hendrix, S., Berry, J. D., Elliott, M. A., Maiser, S., Karam, C., Caress, J. B., Owegi, M. A., Quick, A., Wymer, J., Goutman, S. A., Heitzman, D., Heiman-Patterson, T., Jackson, C. E., Quinn, C., Rothstein, J. D., Kasarskis, E. J., Katz, J., … Cudkowicz, M. E. (2020). Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. The New England Journal of Medicine, 383(10), 919–930. https://doi.org/10.1056/NEJMoa1916945
Paganoni, S., Hendrix, S., Dickson, S. P., Knowlton, N., Berry, J. D., Elliott, M. A., Maiser, S., Karam, C., Caress, J. B., Owegi, M. A., Quick, A., Wymer, J., Goutman, S. A., Heitzman, D., Heiman-Patterson, T. D., Jackson, C., Quinn, C., Rothstein, J. D., Kasarskis, E. J., … Cudkowicz, M. (2022). Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. Journal of Neurology, Neurosurgery, and Psychiatry, 93(8), 871–875. https://doi.org/10.1136/jnnp-2022-329024
Bernard, E., Pegat, A., Svahn, J., Bouhour, F., Leblanc, P., Millecamps, S., Thobois, S., Guissart, C., Lumbroso, S., & Mouzat, K. (2020). Clinical and Molecular Landscape of ALS Patients with SOD1 Mutations: Novel Pathogenic Variants and Novel Phenotypes. A Single ALS Center Study. International Journal of Molecular Sciences, 21(18). https://doi.org/10.3390/ijms21186807
Capper, M. J., Wright, G. S. A., Barbieri, L., Luchinat, E., Mercatelli, E., McAlary, L., Yerbury, J. J., O’Neill, P. M., Antonyuk, S. V., Banci, L., & Hasnain, S. S. (2018). The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nature Communications, 9(1), 1693. https://doi.org/10.1038/s41467-018-04114-x
Amporndanai, K., Rogers, M., Watanabe, S., Yamanaka, K., O’Neill, P. M., & Hasnain, S. S. (2020). Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine, 59, 102980. https://doi.org/10.1016/j.ebiom.2020.102980
Suk, T. R., & Rousseaux, M. W. C. (2020). The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 15(1), 45. https://doi.org/10.1186/s13024-020-00397-1
Cohen, T. J., Lee, V. M. Y., & Trojanowski, J. Q. (2011). TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends in Molecular Medicine, 17(11), 659–667. https://doi.org/10.1016/j.molmed.2011.06.004
Jo, M., Lee, S., Jeon, Y.-M., Kim, S., Kwon, Y., & Kim, H.-J. (2020). The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Experimental & Molecular Medicine, 52(10), 1652–1662. https://doi.org/10.1038/s12276-020-00513-7
Ayala, Y. M., Zago, P., D’Ambrogio, A., Xu, Y.-F., Petrucelli, L., Buratti, E., & Baralle, F. E. (2008). Structural determinants of the cellular localization and shuttling of TDP-43. Journal of Cell Science, 121(Pt 22), 3778–3785. https://doi.org/10.1242/jcs.038950
Dewey, C. M., Cenik, B., Sephton, C. F., Johnson, B. A., Herz, J., & Yu, G. (2012). TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Research, 1462, 16–25. https://doi.org/10.1016/j.brainres.2012.02.032
Zeineddine, R., Farrawell, N. E., Lambert-Smith, I. A., & Yerbury, J. J. (2017). Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress & Chaperones, 22(6), 893–902. https://doi.org/10.1007/s12192-017-0804-y
Estes, P. S., Boehringer, A., Zwick, R., Tang, J. E., Grigsby, B., & Zarnescu, D. C. (2011). Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Human Molecular Genetics, 20(12), 2308–2321. https://doi.org/10.1093/hmg/ddr124
Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., Moran, J., Liang, T. Y., Ling, S.-C., Sun, E., Wancewicz, E., Mazur, C., Kordasiewicz, H., Sedaghat, Y., Donohue, J. P., Shiue, L., Bennett, C. F., Yeo, G. W., & Cleveland, D. W. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 14(4), 459–468. https://doi.org/10.1038/nn.2779
Zhang, T., Hwang, H.-Y., Hao, H., Talbot, C., & Wang, J. (2012). Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. The Journal of Biological Chemistry, 287(11), 8371–8382. https://doi.org/10.1074/jbc.M111.311977
Vanden Broeck, L., Callaerts, P., & Dermaut, B. (2014). TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends in Molecular Medicine, 20(2), 66–71. https://doi.org/10.1016/j.molmed.2013.11.003
Prpar Mihevc, S., Baralle, M., Buratti, E., & Rogelj, B. (2016). TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins. Scientific Reports, 6, 33996. https://doi.org/10.1038/srep33996
Scheller, E. L., & Krebsbach, P. H. (2009). Gene therapy: design and prospects for craniofacial regeneration. Journal of Dental Research, 88(7), 585–596. https://doi.org/10.1177/0022034509337480
Fleischman, R. A. (1991). Human gene therapy. The American Journal of the Medical Sciences, 301(5), 353–363. https://doi.org/10.1097/00000441-199105000-00011
Genç, B., Jara, J. H., Sanchez, S. S., Lagrimas, A. K. B., Gözütok, Ö., Koçak, N., Zhu, Y., & Hande Özdinler, P. (2022). Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Therapy, 29(3–4), 178–192. https://doi.org/10.1038/s41434-021-00303-4
Jackson, K. L., Dayton, R. D., Orchard, E. A., Ju, S., Ringe, D., Petsko, G. A., Maquat, L. E., & Klein, R. L. (2015). Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis. Gene Therapy, 22(1), 20–28. https://doi.org/10.1038/gt.2014.101
Jackson, K. L., Dayton, R. D., Deverman, B. E., & Klein, R. L. (2016). Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B. Frontiers in Molecular Neuroscience, 9, 116. https://doi.org/10.3389/fnmol.2016.00116
McGuinness, H. Y., Gu, W., Shi, Y., Kobe, B., & Ve, T. (2023). SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. The Neuroscientist, 10738584231162508. https://doi.org/10.1177/10738584231162508
Krus, K. L., Strickland, A., Yamada, Y., Devault, L., Schmidt, R. E., Bloom, A. J., Milbrandt, J., & DiAntonio, A. (2022). Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Reports, 39(13), 111001. https://doi.org/10.1016/j.celrep.2022.111001
Armakola, M., Higgins, M. J., Figley, M. D., Barmada, S. J., Scarborough, E. A., Diaz, Z., Fang, X., Shorter, J., Krogan, N. J., Finkbeiner, S., Farese, R. V., & Gitler, A. D. (2012). Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nature Genetics, 44(12), 1302–1309. https://doi.org/10.1038/ng.2434
Di Fusco, D., Dinallo, V., Marafini, I., Figliuzzi, M. M., Romano, B., & Monteleone, G. (2019). Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Frontiers in Pharmacology, 10, 305. https://doi.org/10.3389/fphar.2019.00305
Dhuri, K., Bechtold, C., Quijano, E., Pham, H., Gupta, A., Vikram, A., & Bahal, R. (2020). Antisense oligonucleotides: an emerging area in drug discovery and development. Journal of Clinical Medicine, 9(6). https://doi.org/10.3390/jcm9062004
Camu, W., De La Cruz, E., & Esselin, F. (2023). Therapeutic tools for familial ALS. Revue Neurologique, 179(1–2), 49–53. https://doi.org/10.1016/j.neurol.2022.10.001
Kim, G., Gautier, O., Tassoni-Tsuchida, E., Ma, X. R., & Gitler, A. D. (2020). ALS genetics: gains, losses, and implications for future therapies. Neuron, 108(5), 822–842. https://doi.org/10.1016/j.neuron.2020.08.022
Melamed, Z., López-Erauskin, J., Baughn, M. W., Zhang, O., Drenner, K., Sun, Y., Freyermuth, F., McMahon, M. A., Beccari, M. S., Artates, J. W., Ohkubo, T., Rodriguez, M., Lin, N., Wu, D., Bennett, C. F., Rigo, F., Da Cruz, S., Ravits, J., Lagier-Tourenne, C., & Cleveland, D. W. (2019). Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nature Neuroscience, 22(2), 180–190. https://doi.org/10.1038/s41593-018-0293-z
Mehta, P. R., Brown, A.-L., Ward, M. E., & Fratta, P. (2023). The era of cryptic exons: implications for ALS-FTD. Molecular Neurodegeneration, 18(1), 16. https://doi.org/10.1186/s13024-023-00608-5
Armstrong, G. A. B., & Drapeau, P. (2013). Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. The Journal of Neuroscience, 33(4), 1741–1752. https://doi.org/10.1523/JNEUROSCI.4003-12.2013
Yamashita, M., Nonaka, T., Arai, T., Kametani, F., Buchman, V. L., Ninkina, N., Bachurin, S. O., Akiyama, H., Goedert, M., & Hasegawa, M. (2009). Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Letters, 583(14), 2419–2424. https://doi.org/10.1016/j.febslet.2009.06.042
Shi, Y., Hung, S.-T., Rocha, G., Lin, S., Linares, G. R., Staats, K. A., Seah, C., Wang, Y., Chickering, M., Lai, J., Sugawara, T., Sagare, A. P., Zlokovic, B. V., & Ichida, J. K. (2019). Identification and therapeutic rescue of autophagosome and glutamate receptor defects in C9ORF72 and sporadic ALS neurons. Journal of Clinical Investigation Insight, 5(15). https://doi.org/10.1172/jci.insight.127736
Pozzi, S., Thammisetty, S. S., Codron, P., Rahimian, R., Plourde, K. V., Soucy, G., Bareil, C., Phaneuf, D., Kriz, J., Gravel, C., & Julien, J.-P. (2019). Virus-mediated delivery of antibody targeting TAR DNA-binding protein-43 mitigates associated neuropathology. The Journal of Clinical Investigation, 129(4), 1581–1595. https://doi.org/10.1172/JCI123931
Ward, M. E., Taubes, A., Chen, R., Miller, B. L., Sephton, C. F., Gelfand, J. M., Minami, S., Boscardin, J., Martens, L. H., Seeley, W. W., Yu, G., Herz, J., Filiano, A. J., Arrant, A. E., Roberson, E. D., Kraft, T. W., Farese, R. V., Green, A., & Gan, L. (2014). Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. The Journal of Experimental Medicine, 211(10), 1937–1945. https://doi.org/10.1084/jem.20140214
Liu, R., Yang, G., Nonaka, T., Arai, T., Jia, W., & Cynader, M. S. (2013). Reducing TDP-43 aggregation does not prevent its cytotoxicity. Acta Neuropathologica Communications, 1, 49. https://doi.org/10.1186/2051-5960-1-49
Kamagata, K., Kanbayashi, S., Koda, S., Kadotani, A., Ubukata, O., & Tashima, T. (2023). Suppression of TDP-43 aggregation by artificial peptide binder targeting to its low complexity domain. Biochemical and Biophysical Research Communications, 662, 119–125. https://doi.org/10.1016/j.bbrc.2023.04.064
Mackenzie, I. R. A., & Rademakers, R. (2008). The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Current Opinion in Neurology, 21(6), 693–700. https://doi.org/10.1097/WCO.0b013e3283168d1d
Zhang, K., Donnelly, C. J., Haeusler, A. R., Grima, J. C., Machamer, J. B., Steinwald, P., Daley, E. L., Miller, S. J., Cunningham, K. M., Vidensky, S., Gupta, S., Thomas, M. A., Hong, I., Chiu, S.-L., Huganir, R. L., Ostrow, L. W., Matunis, M. J., Wang, J., Sattler, R., … Rothstein, J. D. (2015). The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 525(7567), 56–61. https://doi.org/10.1038/nature14973
Posted
Categories
License
Copyright (c) 2024 Sonya Sar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.