Preprint / Version 1

Applications of Exosomes in Cancer Therapy

##article.authors##

  • Aditya Bhaskara Dougherty Valley High School

DOI:

https://doi.org/10.58445/rars.858

Keywords:

Exosomes, Cancer Therapy, Drug Delivery, Biomarkers

Abstract

This systematic review explores the field of utilizing exosomes for cancer therapy, providing a comprehensive analysis of their mechanisms, applications, advantages, and limitations. Exosomes, specialized extracellular vesicles, demonstrate promising attributes as potential vehicles for drug delivery due to their inherent biocompatibility, immunotolerance, and ability to traverse biological barriers. The review categorizes exosomes based on their in vivo sources, including milk, dendritic cells, mesenchymal stem cells, erythrocytes, and tumor cells, elucidating the unique advantages and challenges associated with each type. Additionally, the study delves into various exosome-loading techniques such as transfection, incubation, and electroporation. The clinical implications of exosomes as cancer biomarkers are detailed, including their role in early detection and diagnosis through exosomal RNA and protein analysis. Despite the promising potential, the review also highlights existing challenges in industrial-scale production, standardization, and long-term biosafety. Finally, the paper outlines future research directions aimed at refining exosome-based therapies, addressing existing limitations, and realizing their full therapeutic potential against cancer.

References

Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and Biomedical Applications of Exosomes. Science, 367(6478). https://doi.org/10.1126/science.aau6977

Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., Lan, X., Lei, C., & Chen, H. (2020). Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Proliferation, 53(7). https://doi.org/10.1111/cpr.12857

Li, J., Huang, Y., Sun, H., & Yang, L. (2023). Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1181308

Chen, L., Wang, L., Zhu, L., Xu, Z., Liu, Y., Li, Z., Zhou, J., & Luo, F. (2022). Exosomes as Drug Carriers in Anti-Cancer Therapy. Frontiers in Cell and Developmental Biology, 10, 728616. https://doi.org/10.3389/fcell.2022.728616

Zhang, L., & Yu, D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1871(2), 455–468. https://doi.org/10.1016/j.bbcan.2019.04.004

Reif, S., Elbaum Shiff, Y., & Golan-Gerstl, R. (2019). Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner. Journal of Translational Medicine, 17(1). https://doi.org/10.1186/s12967-019-2072-3

Zeng, H., Guo, S., Ren, X., Wu, Z., Liu, S., & Yao, X. (2023). Current Strategies for Exosome Cargo Loading and Targeting Delivery. 12(10), 1416–1416. https://doi.org/10.3390/cells12101416

Feng, X., Chen, X., Zheng, X., Zhu, H., Qi, Q., Liu, S., Zhang, H., & Che, J. (2021). Latest Trend of Milk Derived Exosomes: Cargos, Functions, and Applications. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.747294

Vashisht, M., Rani, P., Onteru, S. K., & Singh, D. (2017). Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro. Applied Biochemistry and Biotechnology, 183(3), 993–1007. https://doi.org/10.1007/s12010-017-2478-4

Liu, K. (2016). Dendritic Cells. Encyclopedia of Cell Biology, 741–749. https://doi.org/10.1016/B978-0-12-394447-4.30111-0

Pitt, J. M., Charrier, M., Viaud, S., André, F., Besse, B., Chaput, N., & Zitvogel, L. (2014). Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. Journal of Immunology (Baltimore, Md.: 1950), 193(3), 1006–1011. https://doi.org/10.4049/jimmunol.1400703

Théry, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., & Amigorena, S. (1999). Molecular Characterization of Dendritic Cell-Derived Exosomes. The Journal of Cell Biology, 147(3), 599–610. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151184/

Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., & Amigorena, S. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Medicine, 4(5), 594–600. https://doi.org/10.1038/nm0598-594

Ullah, I., Subbarao, R., & Rho, G. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2), 1–18. https://doi.org/10.1042/bsr20150025

Chandra, A. (2023). Mesenchymal Stem Cell Biology. Mayo Clinic. https://www.mayo.edu/research/labs/bone-injury-repair/research/mesenchymal-stem-cell-biology#

Rao, D., Huang, D., Sang, C., Zhong, T., Zhang, Z., & Tang, Z. (2022). Advances in Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.797359

Lee, J.-K., Park, S.-R., Jung, B.-K., Jeon, Y.-K., Lee, Y.-S., Kim, M.-K., Kim, Y.-G., Jang, J.-Y., & Kim, C.-W. (2013). Exosomes Derived from Mesenchymal Stem Cells Suppress Angiogenesis by Down-Regulating VEGF Expression in Breast Cancer Cells. PLoS ONE, 8(12), e84256. https://doi.org/10.1371/journal.pone.0084256

Lou, G., Song, X., Yang, F., Wu, S., Wang, J., Chen, Z., & Liu, Y. (2015). Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. Journal of Hematology & Oncology, 8(1). https://doi.org/10.1186/s13045-015-0220-7

Sun, Y., Liu, G., Zhang, K., Cao, Q., Liu, T., & Li, J. (2021). Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Research & Therapy, 12(1). https://doi.org/10.1186/s13287-021-02629-7

Yassine, S., & Alaaeddine, N. (2021). Mesenchymal Stem Cell Exosomes and Cancer: Controversies and Prospects. Advanced Biology, 6(2), 2101050. https://doi.org/10.1002/adbi.202101050

Dzierzak, E., & Philipsen, S. (2013). Erythropoiesis: Development and Differentiation. Cold Spring Harbor Perspectives in Medicine, 3(4), a011601–a011601. https://doi.org/10.1101/cshperspect.a011601

Kuo, W. P., Tigges, J. C., Toxavidis, V., & Ghiran, I. (2017). Red Blood Cells: A Source of Extracellular Vesicles. Methods in Molecular Biology (Clifton, N.J.), 1660, 15–22. https://doi.org/10.1007/978-1-4939-7253-1_2

Kalra, A., & Tuma, F. (2018, December 18). Physiology, Liver. National Library of Medicine; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535438/

Perets, N., Betzer, O., Shapira, R., Brenstein, S., Angel, A., Sadan, T., Ashery, U., Popovtzer, R., & Offen, D. (2019). Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. Nano Letters, 19(6), 3422–3431. https://doi.org/10.1021/acs.nanolett.8b04148

Yang, L., Huang, S., Zhang, Z., Liu, Z., & Zhang, L. (2022). Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. International Journal of Molecular Sciences, 23(11), 5927. https://doi.org/10.3390/ijms23115927

Xu, Y., Luo, F., Liu, Y., Shi, L., Lu, X., Xu, W., & Liu, Q. (2015). Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Archives of Toxicology, 89(7), 1071–1082. https://doi.org/10.1007/s00204-014-1291-x

Qiao, L., Hu, S., Huang, K., Su, T., Li, Z., Vandergriff, A., Cores, J., Dinh, P.-U., Allen, T., Shen, D., Liang, H., Li, Y., & Cheng, K. (2020). Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics, 10(8), 3474–3487. https://doi.org/10.7150/thno.39434

Lu, Y., Huang, W., Li, M., & Zheng, A. (2023). Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics, 15(2), 598–598. https://doi.org/10.3390/pharmaceutics15020598

Lennaárd, A. J., Mamand, D. R., Wiklander, R. J., EL Andaloussi, S., & Wiklander, O. P. B. (2021). Optimised Electroporation for Loading of Extracellular Vesicles with Doxorubicin. Pharmaceutics, 14(1), 38. https://doi.org/10.3390/pharmaceutics14010038

Li, Y., Xing, L., Wang, L., Liu, X., Wu, L., Ni, M., Zhou, Z., Li, L., Liu, X., & Huang, Y. (2023). Milk-derived exosomes as a promising vehicle for oral delivery of hydrophilic biomacromolecule drugs. Asian Journal of Pharmaceutical Sciences, 18(2), 100797. https://doi.org/10.1016/j.ajps.2023.100797

Sedykh, S., Kuleshova, A., & Nevinsky, G. (2020). Milk Exosomes: Perspective Agents for Anticancer Drug Delivery. International Journal of Molecular Sciences, 21(18), 6646. https://doi.org/10.3390/ijms21186646

Xia, J., Miao, Y., Wang, X., Huang, X., & Dai, J. (2022). Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomedicine & Pharmacotherapy, 152, 113250. https://doi.org/10.1016/j.biopha.2022.113250

Dendritic Cell-derived Exosomes (DEX)-based Vaccines - Creative Biolabs. (n.d.). Www.creative-Biolabs.com. Retrieved January 3, 2024, from https://www.creative-biolabs.com/exosome/dendritic-cell-derived-exosomes-dex-based-vaccines.htm

Elashiry, M., Elsayed, R., & Cutler, C. W. (2021). Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells, 11(1), 115. https://doi.org/10.3390/cells11010115

Elham Oveili, Somayeh Vafaei, Haniyeh Bazavar, Eslami, Y., Ehsan Mamaghanizadeh, Saman Yasamineh, & Omid Gholizadeh. (2023). The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. 21(1). https://doi.org/10.1186/s12964-022-01017-9

Wei, W., Ao, Q., Wang, X., Cao, Y., Liu, Y., Zheng, S. G., & Tian, X. (2020). Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Frontiers in Pharmacology, 11, 590470. https://doi.org/10.3389/fphar.2020.590470

Ma, S.-R., Xia, H.-F., Gong, P., & Yu, Z.-L. (2023). Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines, 11(10), 2798. https://doi.org/10.3390/biomedicines11102798

Sadeghi, S., Tehrani, F. R., Tahmasebi, S., Shafiee, A., & Hashemi, S. M. (2023). Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. https://doi.org/10.1007/s10787-022-01115-7

Tian, J., Han, Z., Song, D., Peng, Y., Xiong, M., Chen, Z., Duan, S., & Zhang, L. (2023). Engineered Exosome for Drug Delivery: Recent Development and Clinical Applications. International Journal of Nanomedicine, Volume 18, 7923–7940. https://doi.org/10.2147/ijn.s444582

Li, X., Corbett, A. L., Taatizadeh, E., Tasnim, N., Little, J. P., Garnis, C., Daugaard, M., Guns, E., Hoorfar, M., & Li, I. T. S. (2019). Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 3(1), 011503. https://doi.org/10.1063/1.5087122

Roser, M., & Ritchie, H. (2019, November). Cancer. Our World in Data. https://ourworldindata.org/cancer

Panigrahi, A. R., Srinivas, L., & Panda, J. (2022). Exosomes: Insights and therapeutic applications in cancer. Translational Oncology, 21, 101439. https://doi.org/10.1016/j.tranon.2022.101439

Makler, A., & Asghar, W. (2020). Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Review of Molecular Diagnostics, 20(4), 387–400. https://doi.org/10.1080/14737159.2020.1731308

Hannafon, B. N., Trigoso, Y. D., Calloway, C. L., Zhao, Y. D., Lum, D. H., Welm, A. L., Zhao, Z. J., Blick, K. E., Dooley, W. C., & Ding, W. Q. (2016). Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Research, 18(1). https://doi.org/10.1186/s13058-016-0753-x

Per Hydbring, Luigi De Petris, Zhang, Y., Brandén, E., Hirsh Koyi, Novak, M., Kanter, L., Hååg, P., Hurley, J., Vasisht Tadigotla, Zhu, B., Skog, J., Viktorsson, K., Ekman, S., & Lewensohn, R. (2018). Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer, 124, 45–52. https://doi.org/10.1016/j.lungcan.2018.07.018

Xue, X.-F., Zhao, Y., Wang, X., Qin, L., & Hu, R. (2019). Development and validation of serum exosomal microRNAs as diagnostic and prognostic biomarkers for hepatocellular carcinoma. 120(1), 135–142. https://doi.org/10.1002/jcb.27165

Fang, X., Lan, H., Jin, K., & Qian, J. (2023). Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Frontiers in Oncology, 13, 1149551. https://doi.org/10.3389/fonc.2023.1149551

Zhao, X., Wu, D., Ma, X., Wang, J., Hou, W., & Zhang, W. (2020). Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomedicine & Pharmacotherapy, 128, 110237. https://doi.org/10.1016/j.biopha.2020.110237

Huda, M. N., Nafiujjaman, M., Deaguero, I. G., Okonkwo, J., Hill, M. L., Kim, T., & Nurunnabi, M. (2021). Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomaterials Science & Engineering, 7(6), 2106–2149. https://doi.org/10.1021/acsbiomaterials.1c00217

Xie, J., Zheng, Z., Tuo, L., Deng, X., Tang, H., Peng, C., & Zou, Y. (2023). Recent advances in exosome-based immunotherapy applied to cancer. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1296857

Feng, W., Dean, D. C., Hornicek, F. J., Shi, H., & Duan, Z. (2019). Exosomes promote pre-metastatic niche formation in ovarian cancer. Molecular Cancer, 18(1). https://doi.org/10.1186/s12943-019-1049-4

Zhang, Y., Li, J., Gao, W., & Xie, N. (2022). Exosomes as Anticancer Drug Delivery Vehicles: Prospects and Challenges. Frontiers in Bioscience-Landmark, 27(10), 293. https://doi.org/10.31083/j.fbl2710293

Downloads

Posted

2024-01-06