Preprint / Version 1

Dendritic Cells and Their Role in Immunotherapy

##article.authors##

  • Samahith Thellakal BASIS Independent Fremont Upper School
  • Samarth Shah BASIS Independent Fremont Upper School
  • Aditya Bhaskara Dougherty Valley High School

DOI:

https://doi.org/10.58445/rars.831

Keywords:

Dendritic Cells, Innate Immune System, Immunotherapy, Cancer, Toll-like receptors, Major Histocompatibility Complex, T cell, Antigen Presentation

Abstract

Dendritic cells (DCs) serve as critical orchestrators in the immune system, bridging the innate and adaptive responses. This review explores the role of DCs in immunotherapy, particularly in cancer treatment. The article starts by discussing existing DC-based treatments, categorizing them into ex vivo and in vivo methodologies, with a particular emphasis on vaccine creation and the use of nanovaccines. Moreover, innovative approaches like blocking inhibitory pathways to enhance DC functionality are explored. Despite significant advancements, challenges such as DC migration inefficiencies and dosing concerns remain. Finally, future prospects in DC-based therapies, including combination therapies with traditional cancer treatments, are highlighted. This review paper underscores the transformative potential of dendritic cell interactions in reshaping cancer immunotherapy paradigms.

References

Gardner, A., de Mingo Pulido, Á., & Ruffell, B. (2020). Dendritic Cells and Their Role in Immunotherapy. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00924

Alessio Nencioni, Grünebach, F., Schmidt, S., Müller, M., Boy, D., Patrone, F., Ballestrero, A., & Brossart, P. (2008). The use of dendritic cells in cancer immunotherapy. Critical Reviews in Oncology/Hematology, 65(3), 191–199. https://doi.org/10.1016/j.critrevonc.2007.10.002

Ardavı́nC., Amigorena, S., & e Sousa, C. R. (2004). Dendritic Cells. Immunity, 20(1), 17–23. https://doi.org/10.1016/s1074-7613(03)00352-2

Constantino, J., Gomes, C., Falcão, A., Neves, B. M., & Cruz, M. T. (2017). Dendritic cell-based immunotherapy: a basic review and recent advances. Immunologic Research, 65(4), 798–810. https://doi.org/10.1007/s12026-017-8931-1

Palucka, K., & Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), 265–277. https://doi.org/10.1038/nrc3258

Sabado, R. L., Balan, S., & Bhardwaj, N. (2016). Dendritic cell-based immunotherapy. Cell Research, 27(1), 74–95. https://doi.org/10.1038/cr.2016.157

Paulis, L. E., Mandal, S., Kreutz, M., & Figdor, C. G. (2013). Dendritic cell-based nanovaccines for cancer immunotherapy. Current Opinion in Immunology, 25(3), 389–395. https://doi.org/10.1016/j.coi.2013.03.001

Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252. https://doi.org/10.1038/32588

Van Brussel, I., Berneman, Z. N., & Cools, N. (2012). Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the Immune System. Mediators of Inflammation, 2012, 1–14. https://doi.org/10.1155/2012/690643

Steinman, R. M., & Banchereau, J. (2007). Taking dendritic cells into medicine. Nature, 449(7161), 419–426. https://doi.org/10.1038/nature06175

Borghaei, H., Smith, M. R., & Campbell, K. S. (2009). Immunotherapy of cancer. European Journal of Pharmacology, 625(1-3), 41–54. https://doi.org/10.1016/j.ejphar.2009.09.067

Palucka, K., & Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), 265–277. https://doi.org/10.1038/nrc3258

Boudreau, J. E., Bonehill, A., Thielemans, K., & Wan, Y. (2011). Engineering Dendritic Cells to Enhance Cancer Immunotherapy. Molecular Therapy, 19(5), 841–853. https://doi.org/10.1038/mt.2011.57

‌Joffre, O. P., Segura, E., Savina, A., & Amigorena, S. (2012). Cross-presentation by dendritic cells. Nature Reviews Immunology, 12(8), 557–569. https://doi.org/10.1038/nri3254

BLANCO, P., PALUCKA, A., PASCUAL, V., & BANCHEREAU, J. (2008). Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine & Growth Factor Reviews, 19(1), 41–52. https://doi.org/10.1016/j.cytogfr.2007.10.004

‌Waldhauer, I., & Steinle, A. (2008). NK cells and cancer immunosurveillance. Oncogene, 27(45), 5932–5943. https://doi.org/10.1038/onc.2008.267

Schuler, G., Schuler-Thurner, B., & Steinman, R. M. (2003). The use of dendritic cells in cancer immunotherapy. Current Opinion in Immunology, 15(2), 138–147. https://doi.org/10.1016/s0952-7915(03)00015-3

‌Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P., & Boon, T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer, 14(2), 135–146. https://doi.org/10.1038/nrc3670

Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331(6024), 1565–1570. https://doi.org/10.1126/science.1203486

‌Zitvogel, L., Tesniere, A., & Kroemer, G. (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nature Reviews Immunology, 6(10), 715–727. https://doi.org/10.1038/nri1936

Constantino, J., Gomes, C., Falcão, A., Cruz, M. T., & Neves, B. M. (2016). Antitumor dendritic cell–based vaccines: lessons from 20 years of clinical trials and future perspectives. Translational Research, 168, 74–95. https://doi.org/10.1016/j.trsl.2015.07.008

‌Cruz, L. J., Tacken, P. J., Rueda, F., Domingo, J. C., Albericio, F., & Figdor, C. G. (2012, January 1). Chapter eight - Targeting Nanoparticles to Dendritic Cells for Immunotherapy (N. Düzgüneş, Ed.). ScienceDirect; Academic Press. https://www.sciencedirect.com/science/article/abs/pii/B9780123918581000083

Sabado, R. L., & Bhardwaj, N. (2010). Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy, 2(1), 37–56. https://doi.org/10.2217/imt.09.43

‌Obermaier, B., Dauer, M., Herten, J., Schad, K., Endres, S., & Eigler, A. (2003). Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biological Procedures Online, 5(1), 197–203. https://doi.org/10.1251/bpo62

Jia, J., Zhang, Y., Yan, X., Jiang, C., Yan, B., & Zhai, S. (2018). Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy. Frontiers in Oncology, 8. https://doi.org/10.3389/fonc.2018.00404

‌Rosenblatt, J., Baldev Vasir, Uhl, L., Blotta, S., MacNamara, C., Poorvi Somaiya, Wu, Z., Joyce, R., Levine, J. A., Dilani Dombagoda, Yuan, Y., Francoeur, K., Fitzgerald, D. M., Richardson, P. G., Weller, E., Anderson, K. C., Kufe, D., Munshi, N. C., & Avigan, D. (2011). Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. 117(2), 393–402. https://doi.org/10.1182/blood-2010-04-277137

Morse, M. A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T. M., Valente, N., Shreeniwas, R., Sutton, M., Delcayre, A., Hsu, D.-H., Le Pecq, J.-B., & Lyerly, H. K. (2005). Journal of Translational Medicine, 3(1), 9. https://doi.org/10.1186/1479-5876-3-9

‌Bonaccorsi, I., Pezzino, G., Morandi, B., & Ferlazzo, G. (2013). Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunology Letters, 155(1-2), 6–10. https://doi.org/10.1016/j.imlet.2013.09.021

Robbins, P. F., Lu, Y.-C., El-Gamil, M., Li, Y. F., Gross, C., Gartner, J., Lin, J. C., Teer, J. K., Cliften, P., Tycksen, E., Samuels, Y., & Rosenberg, S. A. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747–752. https://doi.org/10.1038/nm.3161

‌Wang, C., Lin, G. H. Y., McPherson, A. J., & Watts, T. H. (2009). Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunological Reviews, 229(1), 192–215. https://doi.org/10.1111/j.1600-065x.2009.00765.x

ENGLEMAN, E. (2003). Dendritic cell-based cancer immunotherapy. Seminars in Oncology, 30, 23–29. https://doi.org/10.1016/s0093-7754(03)00229-x

‌Murillo, O., Dubrot, J., Palazón, A., Arina, A., Azpilikueta, A., Alfaro, C., Solano, S., Ochoa, M. C., Berasain, C., Gabari, I., Pérez-Gracia, José. L., Berraondo, P., Hervás-Stubbs, S., & Melero, I. (2009). In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. European Journal of Immunology, 39(9), 2424–2436. https://doi.org/10.1002/eji.200838958

O’Neill, D. W., Adams, S., & Bhardwaj, N. (2004). Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood, 104(8), 2235–2246. https://doi.org/10.1182/blood-2003-12-4392

‌Elgueta, R., Benson, M. J., de Vries, V. C., Wasiuk, A., Guo, Y., & Noelle, R. J. (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunological Reviews, 229(1), 152–172. https://doi.org/10.1111/j.1600-065x.2009.00782.x

Hanks, B. A., Jiang, J., Singh, R., Song, W., Barry, M. A., M. Helen Huls, Slawin, K. M., & Spencer, D. M. (2005). Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nature Medicine, 11(2), 130–137. https://doi.org/10.1038/nm1183

‌Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237. https://doi.org/10.1016/j.coi.2010.01.009

Li, X., Ferrel, G. L., Guerra, M. C., Hode, T., Lunn, J. A., Adalsteinsson, O., Nordquist, R. E., Liu, H., & Chen, W. R. (2011). Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochemical & Photobiological Sciences, 10(5), 817–821. https://doi.org/10.1039/C0PP00306A

‌K Hasumi, Aoki, Y., Watanabe, R., Hankey, K. G., & Mann, D. L. (2011). Therapeutic Response in Patients with Advanced Malignancies Treated with Combined Dendritic Cell–Activated T Cell Based Immunotherapy and Intensity–Modulated Radiotherapy. Cancers, 3(2), 2223–2242. https://doi.org/10.3390/cancers3022223

Kalinski, P., Mailliard, R. B., Giermasz, A., Zeh, H. J., Basse, P., Bartlett, D. L., Kirkwood, J. M., Lotze, M. T., & Herberman, R. B. (2005). Natural killer–dendritic cell cross-talk in cancer immunotherapy. Expert Opinion on Biological Therapy, 5(10), 1303–1315. https://doi.org/10.1517/14712598.5.10.1303

‌Pfannenstiel, L. W., Lam, S. M., Emens, L. A., Jaffee, E. M., & Armstrong, T. D. (2010). Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. 263(1), 79–87. https://doi.org/10.1016/j.cellimm.2010.03.001

Radojcic, V., Bezak, K. B., Skarica, M., Pletneva, M. A., Yoshimura, K., Schulick, R. D., & Luznik, L. (2009). Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunology, Immunotherapy, 59(1), 137–148. https://doi.org/10.1007/s00262-009-0734-3

‌Hobo, W., Novobrantseva, T. I., Fredrix, H., Wong, J., Milstein, S., Epstein-Barash, H., Liu, J., Schaap, N., van der Voort, R., & Dolstra, H. (2012). Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunology, Immunotherapy, 62(2), 285–297. https://doi.org/10.1007/s00262-012-1334-1

Wang, Y., Xiang, Y., Xin, V. W., Wang, X.-W., Peng, X.-C., Liu, X.-Q., Wang, D., Li, N., Cheng, J.-T., Lyv, Y.-N., Cui, S.-Z., Ma, Z., Zhang, Q., & Xin, H.-W. (2020). Dendritic cell biology and its role in tumor immunotherapy. Journal of Hematology & Oncology, 13(1). https://doi.org/10.1186/s13045-020-00939-6

‌Cohen, N., Enguerran Mouly, Hamdi, H., Matthieu Maillot, Pallardy, M., Véronique Godot, Capel, F., Balian, A., Naveau, S., Galanaud, P., Lemoine, F. M., & Émilie, D. (2006). GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood, 107(5), 2037–2044. https://doi.org/10.1182/blood-2005-07-2760

Houot, R., Schultz, L. M., Marabelle, A., & Kohrt, H. (2015). T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunology Research, 3(10), 1115–1122. https://doi.org/10.1158/2326-6066.cir-15-0190

‌Peterson, E. E., & Barry, K. C. (2021). The Natural Killer–Dendritic Cell Immune Axis in Anti-Cancer Immunity and Immunotherapy. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.621254

Figdor, C. G., de Vries, I. J. M., Lesterhuis, W. J., & Melief, C. J. M. (2004). Dendritic cell immunotherapy: mapping the way. Nature Medicine, 10(5), 475–480. https://doi.org/10.1038/nm1039

‌Wculek, S. K., Cueto, F. J., Mujal, A. M., Melero, I., Krummel, M. F., & Sancho, D. (2020). Dendritic cells in cancer immunology and immunotherapy. Nature Reviews Immunology, 20(1), 7–24. https://doi.org/10.1038/s41577-019-0210-z

Anguille, S., Smits, E. L., Bryant, C., Van Acker, H. H., Goossens, H., Lion, E., Fromm, P. D., Hart, D. N., Van Tendeloo, V. F., & Berneman, Z. N. (2015). Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 67(4), 731–753. https://doi.org/10.1124/pr.114.009456

‌Sprooten, J., Ceusters, J., Coosemans, A., Agostinis, P., De Vleeschouwer, S., Zitvogel, L., Kroemer, G., Galluzzi, L., & Garg, A. D. (2019). Trial watch: dendritic cell vaccination for cancer immunotherapy. OncoImmunology, 8(11), 1638212. https://doi.org/10.1080/2162402x.2019.1638212

Pitt, J. M., André, F., Amigorena, S., Soria, J.-C., Eggermont, A., Kroemer, G., & Zitvogel, L. (2016). Dendritic cell–derived exosomes for cancer therapy. Journal of Clinical Investigation, 126(4), 1224–1232. https://doi.org/10.1172/jci81137

Kalinski, P., Muthuswamy, R., & Urban, J. (2013). Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Review of Vaccines, 12(3), 285–295. https://doi.org/10.1586/erv.13.22

Waisman, A., Lukas, D., Clausen, B. E., & Yogev, N. (2017). Dendritic cells as gatekeepers of tolerance. Seminars in Immunopathology, 39(2), 153–163. https://doi.org/10.1007/s00281-016-0583-z

‌Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F., & Berneman, Z. N. (2014). Clinical use of dendritic cells for cancer therapy. The Lancet Oncology, 15(7), e257–e267. https://doi.org/10.1016/s1470-2045(13)70585-0

Moreno Ayala, M. A., Campbell, T. F., Zhang, C., Dahan, N., Bockman, A., Prakash, V., Feng, L., Sher, T., & DuPage, M. (2023). CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity, 56(7), 1613-1630.e5. https://doi.org/10.1016/j.immuni.2023.06.003

‌Cohen, M., Giladi, A., Barboy, O., Hamon, P., Li, B., Zada, M., Gurevich-Shapiro, A., Beccaria, C. G., David, E., Maier, B. B., Buckup, M., Kamer, I., Deczkowska, A., Le Berichel, J., Bar, J., Iannacone, M., Tanay, A., Merad, M., & Amit, I. (2022). The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nature Cancer, 3(3), 303–317. https://doi.org/10.1038/s43018-022-00338-5

Lechmann, M., Zinser, E., Golka, A., & Steinkasserer, A. (2002). Role of CD83 in the Immunomodulation of Dendritic Cells. International Archives of Allergy and Immunology, 129(2), 113–118. https://doi.org/10.1159/000065883

‌Mayoux, M., Roller, A., Pulko, V., Sammicheli, S., Chen, S., Sum, E., Jost, C., Fransen, M. F., Buser, R. B., Kowanetz, M., Rommel, K., Matos, I., Colombetti, S., Belousov, A., Karanikas, V., Ossendorp, F., Hegde, P. S., Chen, D. S., Umana, P., & Perro, M. (2020). Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Science Translational Medicine, 12(534), eaav7431. https://doi.org/10.1126/scitranslmed.aav7431

Ghorbaninezhad, F., Alemohammad, H., Najafzadeh, B., Masoumi, J., Shadbad, M. A., Shahpouri, M., Saeedi, H., Rahbarfarzam, O., & Baradaran, B. (2023). Dendritic cell-derived exosomes: A new horizon in personalized cancer immunotherapy? Cancer Letters, 562, 216168. https://doi.org/10.1016/j.canlet.2023.216168

‌Adorini, L., & Penna, G. (2009). Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Human Immunology, 70(5), 345–352. https://doi.org/10.1016/j.humimm.2009.01.016

Frick, J.-S., Grünebach, F., & Autenrieth, I. B. (2010). Immunomodulation by semi-mature dendritic cells: A novel role of Toll-like receptors and interleukin-6. International Journal of Medical Microbiology, 300(1), 19–24. https://doi.org/10.1016/j.ijmm.2009.08.010

‌Melief, C. J. M. (2008). Cancer Immunotherapy by Dendritic Cells. Immunity, 29(3), 372–383. https://doi.org/10.1016/j.immuni.2008.08.004

Subtil, B., Iyer, K. K., Poel, D., Bakkerus, L., Gorris, M. A. J., Escalona, J. C., Dries, K. van den, Cambi, A., Verheul, H. M. W., de Vries, I. J. M., & Tauriello, D. V. F. (2023). Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1105244

‌Hu, Y., Zhang, W., Chu, X., Wang, A., He, Z., Si, C.-L., & Hu, W. (2023). Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. International Journal of Pharmaceutics, 635, 122703. https://doi.org/10.1016/j.ijpharm.2023.122703

Allan, R. S., Waithman, J., Bedoui, S., Jones, C. M., Villadangos, J. A., Zhan, Y., Lew, A. M., Shortman, K., Heath, W. R., & Carbone, F. R. (2006). Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity, 25(1), 153–162. https://doi.org/10.1016/j.immuni.2006.04.017

‌Austyn, J. M. (1998). Dendritic cells. Current Opinion in Hematology, 5(1), 3–15. https://doi.org/10.1097/00062752-199801000-00002

Wang, H., Sobral, M. C., Zhang, D., Adam N.R. Cartwright, Aileen Weiwei Li, Dellacherie, M. O., Tringides, C. M., Koshy, S. T., Wucherpfennig, K. W., & Mooney, D. J. (2020). Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 19(11), 1244–1252. https://doi.org/10.1038/s41563-020-0680-1

‌Schraml, B. U., & Reis e Sousa, C. (2015). Defining dendritic cells. Current Opinion in Immunology, 32, 13–20. https://doi.org/10.1016/j.coi.2014.11.001

Murphy, T. L., & Murphy, K. M. (2021). Dendritic cells in cancer immunology. Cellular & Molecular Immunology. https://doi.org/10.1038/s41423-021-00741-5

‌Ballestrero, A., Boy, D., Moran, E., Cirmena, G., Brossart, P., & Nencioni, A. (2008). Immunotherapy with dendritic cells for cancer. Advanced Drug Delivery Reviews, 60(2), 173–183. https://doi.org/10.1016/j.addr.2007.08.026

Palucka, K., Ueno, H., Fay, J., & Banchereau, J. (2010). Dendritic cells and immunity against cancer. Journal of Internal Medicine, 269(1), 64–73. https://doi.org/10.1111/j.1365-2796.2010.02317.x

‌Banchereau, J., Schuler-Thurner, B., Palucka, A. Karolina., & Schuler, G. (2001). Dendritic Cells as Vectors for Therapy. Cell, 106(3), 271–274. https://doi.org/10.1016/s0092-8674(01)00448-2

Radford, K. J., Tullett, K. M., & Lahoud, M. H. (2014). Dendritic cells and cancer immunotherapy. Current Opinion in Immunology, 27, 26–32. https://doi.org/10.1016/j.coi.2014.01.005

‌Humrich, J., & Jenne, L. (2003). Viral vectors for dendritic cell-based immunotherapy. Current Topics in Microbiology and Immunology, 276, 241–259. https://doi.org/10.1007/978-3-662-06508-2_11

Schuler, G. (2010). Dendritic cells in cancer immunotherapy. European Journal of Immunology, 40(8), 2123–2130. https://doi.org/10.1002/eji.201040630

‌Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Innate Immunity. Nih.gov; Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26846/

Yin, J. J., Pollock, C. B., & Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Research, 15(1), 57–62. https://doi.org/10.1038/sj.cr.7290266

‌Roy, P. S., & Saikia, B. J. (2016). Cancer and cure: A critical analysis. Indian Journal of Cancer, 53(3), 441–442. https://doi.org/10.4103/0019-509X.200658

Hausman, D. M. (2019). What Is Cancer? Perspectives in Biology and Medicine, 62(4), 778–784. https://doi.org/10.1353/pbm.2019.0046

‌Graham, T. A., & Sottoriva, A. (2016). Measuring cancer evolution from the genome. The Journal of Pathology, 241(2), 183–191. https://doi.org/10.1002/path.4821

Galati, D., & Zanotta, S. (2023). Dendritic Cell and Cancer Therapy. International Journal of Molecular Sciences, 24(4), 4253. https://doi.org/10.3390/ijms24044253

‌Galati, D., & Zanotta, S. (2023). Dendritic Cell and Cancer Therapy. International Journal of Molecular Sciences, 24(4), 4253. https://doi.org/10.3390/ijms24044253

Daftarian, P., Kaifer, A. E., Li, W., Blomberg, B. B., Frasca, D., Roth, F., Chowdhury, R., Berg, E. A., Fishman, J. B., Al Sayegh, H. A., Blackwelder, P., Inverardi, L., Perez, V. L., Lemmon, V., & Serafini, P. (2011). Peptide-Conjugated PAMAM Dendrimer as a Universal DNA Vaccine Platform to Target Antigen-Presenting Cells. Cancer Research, 71(24), 7452–7462. https://doi.org/10.1158/0008-5472.can-11-1766

‌B.N. Hangalapura, Dinja Oosterhoff, J.W.B. de Groot, Boon, L., Tüting, T., van, Gerritsen, W. R., Victor, Pereboev, A., Curiel, D. T., Scheper, R. J., & Tanja. (2011). Potent Antitumor Immunity Generated by a CD40-Targeted Adenoviral Vaccine. 71(17), 5827–5837. https://doi.org/10.1158/0008-5472.can-11-0804

Böttcher, J. P., & Reis e Sousa, C. (2018). The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 4(11), 784–792. https://doi.org/10.1016/j.trecan.2018.09.001

‌Garg, S., Oran, A., Wajchman, J., Sasaki, S., Maris, C. H., Kapp, J. A., & Jacob, J. (2003). Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nature Immunology, 4(9), 907–912. https://doi.org/10.1038/ni962

De Vries, I. J. M., Krooshoop, D. J. E. B., Scharenborg, N. M., Lesterhuis, W. J., Diepstra, J. H. S., Van Muijen, G. N. P., Strijk, S. P., Ruers, T. J., Boerman, O. C., Oyen, W. J. G., Adema, G. J., Punt, C. J. A., & Figdor, C. G. (2003). Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Research, 63(1), 12–17. https://pubmed.ncbi.nlm.nih.gov/12517769/

‌Saito, Y., Komori, S., Kotani, T., Murata, Y., & Matozaki, T. (2022). The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers, 14(8), 1976. https://doi.org/10.3390/cancers14081976

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/ni.1863

‌Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C., & Amigorena, S. (2002). Antigen Presentation and T Cell Stimulation by Dendritic Cells. Annual Review of Immunology, 20(1), 621–667. https://doi.org/10.1146/annurev.immunol.20.100301.064828

Marzaioli, V., Canavan, M., Floudas, A., Wade, S. C., Low, C., Veale, D. J., & Fearon, U. (2020). Monocyte-Derived Dendritic Cell Differentiation in Inflammatory Arthritis Is Regulated by the JAK/STAT Axis via NADPH Oxidase Regulation. Frontiers in Immunology, 11, 1406. https://doi.org/10.3389/fimmu.2020.01406

‌National Cancer Institute. (2021, October 11). What is cancer? National Cancer Institute; National Institutes of Health. https://www.cancer.gov/about-cancer/understanding/what-is-cancer

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Innate Immunity. Nih.gov; Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26846/

‌Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., & Chu, Q. (2022). Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-00934-y

Saito, Y., Komori, S., Kotani, T., Murata, Y., & Matozaki, T. (2022). The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers, 14(8), 1976. https://doi.org/10.3390/cancers14081976

‌Austyn, J. M. (1998). Dendritic cells. Current Opinion in Hematology, 5(1), 3–15. https://doi.org/10.1097/00062752-199801000-00002

Allan, R. S., Waithman, J., Bedoui, S., Jones, C. M., Villadangos, J. A., Zhan, Y., Lew, A. M., Shortman, K., Heath, W. R., & Carbone, F. R. (2006). Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity, 25(1), 153–162. https://doi.org/10.1016/j.immuni.2006.04.017

Savina, A., & Amigorena, S. (2007). Phagocytosis and antigen presentation in dendritic cells. Immunological Reviews, 219(1), 143–156. https://doi.org/10.1111/j.1600-065X.2007.00552.x

Savina, A., & Amigorena, S. (2007). Phagocytosis and antigen presentation in dendritic cells. Immunological Reviews, 219(1), 143–156. https://doi.org/10.1111/j.1600-065X.2007.00552.x

Liu, K. (2016). Dendritic Cells. Encyclopedia of Cell Biology, 741–749. https://doi.org/10.1016/B978-0-12-394447-4.30111-0

Böttcher, J. P., & Reis e Sousa, C. (2018). The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 4(11), 784–792. https://doi.org/10.1016/j.trecan.2018.09.001

‌Hilligan, K. L., & Ronchese, F. (2020). Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cellular & Molecular Immunology, 17(6), 587–599. https://doi.org/10.1038/s41423-020-0465-0

Lanier, L. L., & Phillips, J. H. (1996). Inhibitory MHC class I receptors on NK cells and T cells. Immunology Today, 17(2), 86–91. https://doi.org/10.1016/0167-5699(96)80585-8

Ryu, Seul Hye, et al. “Granulocyte Macrophage-Colony Stimulating Factor Produces a Splenic Subset of Monocyte-Derived Dendritic Cells That Efficiently Polarize T Helper Type 2 Cells in Response to Blood-Borne Antigen.” Frontiers in Immunology, vol. 12, 2021, p. 767037, pubmed.ncbi.nlm.nih.gov/35069539/#:~:text=Blood%2DBorne%20Antigen-, https://doi.org/10.3389/fimmu.2021.767037 . Accessed 27 Dec. 2023.

Knapp, S. (2020, July 17). Dendritic Cells. Biology Dictionary. https://biologydictionary.net/dendritic-cells/

Dendritic Cell Overview - US. (n.d.). Www.thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/dendritic-cell-overview.html

MHC Class I - an overview | ScienceDirect Topics. (n.d.). Www.sciencedirect.com. Retrieved December 27, 2023, from https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mhc-class-i

Zenke, M. (2020). Human ES cell-derived dendritic cells: Meeting the challenge of immune rejection in allogeneic cell therapy. EBioMedicine, 62, 103144. https://doi.org/10.1016/j.ebiom.2020.103144

Ghislat, G., Cheema, A. S., Baudoin, E., Verthuy, C., Ballester, P. J., Crozat, K., Attaf, N., Dong, C., Milpied, P., Malissen, B., Auphan-Anezin, N., Manh, T. P. V., Dalod, M., & Lawrence, T. (2021). NF-κB–dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Science Immunology, 6(61). https://doi.org/10.1126/sciimmunol.abg3570

BLANCO, P., PALUCKA, A., PASCUAL, V., & BANCHEREAU, J. (2008). Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine & Growth Factor Reviews, 19(1), 41–52. https://doi.org/10.1016/j.cytogfr.2007.10.004

Li, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy, 6(1), 1–24. https://doi.org/10.1038/s41392-021-00687-0

Downloads

Posted

2024-01-02