Preprint / Version 1

Analyzing Two Approaches to Treating Cancer: Chemotherapy Versus Targeted Therapy

##article.authors##

  • Isha Tripathi Basis Independent Silicon Valley

DOI:

https://doi.org/10.58445/rars.789

Keywords:

Chemotherapy, Targeted therapy, Cancer, Socioeconomic factors

Abstract

Targeted therapy has significantly advanced the field of oncology and improved patient outcomes in recent years. However, many hurdles remain in replacing the more toxic chemotherapy that is still in use. These two therapies differ in multiple aspects, including the mechanism of action. Unlike chemotherapy which targets all cells, targeted therapy only targets cancer cells. Beyond the biology that each therapy targets, there are several factors, including socioeconomic factors, that determine the need and availability of these treatments. In this review article, we investigate each of these factors and their differing impacts on types of cancers, patients, and regions. Moreover, we share our perspectives and insights on essential changes on the medical and social fronts that can widen the reach of targeted therapy to patients around the world.

References

Goodman, L. S.; Wintrobe, M. M.; et al., Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc 1946, 132, 126-32.

Scott, R. B., Cancer chemotherapy--the first twenty-five years. Br Med J 1970, 4 (5730), 259-65.

Gilman, A., The initial clinical trial of nitrogen mustard. Am J Surg 1963, 105, 574-8.

McClean, S.; Costelloe, C.; Denny, W. A.; Searcey, M.; Wakelin, L. P., Sequence selectivity, cross-linking efficiency and cytotoxicity of DNA-targeted 4-anilinoquinoline aniline mustards. Anticancer Drug Des 1999, 14 (3), 187-204.

Cruet-Hennequart, S.; Glynn, M. T.; Murillo, L. S.; Coyne, S.; Carty, M. P., Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin. DNA Repair (Amst) 2008, 7 (4), 582-96.

Goncalves Paterson Fox, E.; Russ Solis, D.; Delazari Dos Santos, L.; Aparecido Dos Santos Pinto, J. R.; Ribeiro da Silva Menegasso, A.; Cardoso Maciel Costa Silva, R.; Sergio Palma, M.; Correa Bueno, O.; de Alcantara Machado, E., A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis). Toxicon 2013, 65, 5-8.

Kittakoop, P.; Mahidol, C.; Ruchirawat, S., Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem 2014, 14 (2), 239-52.

Russo, P.; Frustaci, A.; Del Bufalo, A.; Fini, M.; Cesario, A., Multitarget drugs of plants origin acting on Alzheimer's disease. Curr Med Chem 2013, 20 (13), 1686-93.

Cushnie, T. P.; Cushnie, B.; Lamb, A. J., Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014, 44 (5), 377-86.

Peters, G. J.; van der Wilt, C. L.; van Moorsel, C. J.; Kroep, J. R.; Bergman, A. M.; Ackland, S. P., Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 2000, 87 (2-3), 227-53.

Matera, C.; Gomila, A. M. J.; Camarero, N.; Libergoli, M.; Soler, C.; Gorostiza, P., Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018, 140 (46), 15764-15773.

Mashita, T.; Kowada, T.; Takahashi, H.; Matsui, T.; Mizukami, S., Light-Wavelength-Based Quantitative Control of Dihydrofolate Reductase Activity by Using a Photochromic Isostere of an Inhibitor. Chembiochem 2019, 20 (11), 1382-1386.

Siriwardena, D.; Edmunds, B.; Wormald, R. P.; Khaw, P. T., National survey of antimetabolite use in glaucoma surgery in the United Kingdom. Br J Ophthalmol 2004, 88 (7), 873-6.

Highley, M. S.; Landuyt, B.; Prenen, H.; Harper, P. G.; De Bruijn, E. A., The Nitrogen Mustards. Pharmacol Rev 2022, 74 (3), 552-599.

Luan, F.; He, X.; Zeng, N., Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 2020, 72 (11), 1491-1512.

Ng, E. W.; Adamis, A. P., Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol 2005, 40 (3), 352-68.

Folkman, J., Endogenous angiogenesis inhibitors. APMIS 2004, 112 (7-8), 496-507.

Cao, Y., Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 2001, 33 (4), 357-69.

Rini, B. I., Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions. Clin Cancer Res 2007, 13 (4), 1098-106.

Gelboin, H. V.; Krausz, K. W.; Gonzalez, F. J.; Yang, T. J., Inhibitory monoclonal antibodies to human cytochrome P450 enzymes: a new avenue for drug discovery. Trends Pharmacol Sci 1999, 20 (11), 432-8.

Waldmann, T. A., Monoclonal antibodies in diagnosis and therapy. Science 1991, 252 (5013), 1657-62.

Tansey, E. M.; Catterall, P. P., Monoclonal antibodies: a witness seminar in contemporary medical history. Med Hist 1994, 38 (3), 322-7.

Schwaber, J.; Cohen, E. P., Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature 1973, 244 (5416), 444-7.

Gelman, J. S.; Sironi, J.; Berezniuk, I.; Dasgupta, S.; Castro, L. M.; Gozzo, F. C.; Ferro, E. S.; Fricker, L. D., Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One 2013, 8 (1), e53263.

Fenteany, G.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey, E. J.; Schreiber, S. L., Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995, 268 (5211), 726-31.

Lovborg, H.; Oberg, F.; Rickardson, L.; Gullbo, J.; Nygren, P.; Larsson, R., Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram. Int J Cancer 2006, 118 (6), 1577-80.

Pangas, S. A.; Woodruff, T. K., Activin signal transduction pathways. Trends Endocrinol Metab 2000, 11 (8), 309-14.

Watanabe, T.; Okada, A.; Gotoh, Y.; Utsumi, R., Inhibitors targeting two-component signal transduction. Adv Exp Med Biol 2008, 631, 229-36.

Levitzki, A., Targeting signal transduction for disease therapy. Curr Opin Cell Biol 1996, 8 (2), 239-44.

Garcia, J.; Hurwitz, H. I.; Sandler, A. B.; Miles, D.; Coleman, R. L.; Deurloo, R.; Chinot, O. L., Bevacizumab (Avastin(R)) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 2020, 86, 102017.

Fuereder, T., Immunotherapy for head and neck squamous cell carcinoma. Memo 2016, 9, 66-69.

Syn, N. L.; Teng, M. W. L.; Mok, T. S. K.; Soo, R. A., De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017, 18 (12), e731-e741.

Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q., Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019, 15 (12), 2548-2560.

Jogalekar, M. P.; Rajendran, R. L.; Khan, F.; Dmello, C.; Gangadaran, P.; Ahn, B. C., CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022, 13, 925985.

Perez, E. A., Carboplatin in combination therapy for metastatic breast cancer. Oncologist 2004, 9 (5), 518-27.

Zhou, Z.; Li, M., Targeted therapies for cancer. BMC Med 2022, 20 (1), 90.

Downloads

Posted

2023-12-16