Preprint / Version 1

Detection and Treatment of Antibiotic-Resistant Pseudomonas Aeruginosa and Burkholderia Cepacia in Healthcare Settings: A Review

##article.authors##

  • Ryan Allen Strake Jesuit College Preparatory

DOI:

https://doi.org/10.58445/rars.784

Keywords:

Antibiotic-Resistant Pseudomonas, Aeruginosa, Burkholderia Cepacia

Abstract

This literature review focuses on the issue of antibiotic resistance in healthcare settings, primarily on the detection and treatment of two highly resistant pathogens, Pseudomonas aeruginosa and Burkholderia cepacia. This review discusses detection methods such as PCR and ELISA, as well as emphasizing the use of 16s- rDNA based PCR assays. This review also explores different current and future treatment strategies for dealing with the two bacteria, such as the use of quorum sensing inhibitors, nanoantibiotics, and phage therapies. This review also discusses a current lack of available research on B. cepacia’s treatment methods, concluding by underscoring the urgent need to combat antibiotic resistance in healthcare environments.

References

Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Vol. 6, Genes and Diseases. Chongqing University; 2019. p. 109–19.

Peters L, Olson L, Khu DTK, Linnros S, Le NK, Hanberger H, et al. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS One. 2019 May 1;14(5).

Tacconelli E, Carrara E, Savoldi A, Kattula D, Burkert F. GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS [Internet]. 2017 Feb [cited 2023 Jul 25]. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

CDC. Antibiotic resistance threats in the United States, 2019 [Internet]. Atlanta, Georgia; 2019 Nov. Available from: https://stacks.cdc.gov/view/cdc/82532

Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020 Dec 3;21(12). 6. Tavares M, Kozak M, Balola A, Sá-Correia I. Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products. 2020; Available from: https://doi.org/10.1128/CMR

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Vol. 37, Biotechnology Advances. Elsevier Inc.; 2019. p. 177–92.

Denis O, Rodriguez-Villalobos H, Struelens MJ. The problem of resistance. Antibiotic and Chemotherapy: Expert Consult. 2010 Jan 1;24–48.

Peri AM, Stewart A, Hume A, Irwin A, Harris PNA. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. 2021; Available from: https://doi.org/10.1007/s11908-021-00755-0

Järvinen AK, Laakso S, Piiparinen P, Aittakorpi A, Lindfors M, Huopaniemi L, et al. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol. 2009;9. 11. Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides (NY). 2015 Oct 1;72:4–15.

Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR, Ghoddousi AR. Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. Journal of Research in Medical Sciences. 2012.

Bouslah Z. Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa. Vol. 50, Medecine et Maladies Infectieuses. Elsevier Masson s.r.l.; 2020. p. 466–79.

Fu H, Gan L, Tian Z, Han J, Du B, Xue G, et al. Rapid detection of Burkholderia cepacia complex carrying the 16S rRNA gene in clinical specimens by recombinase-aided amplification. Front Cell Infect Microbiol. 2022 Sep 5;12.

AuCoin DP, Crump RB, Thorkildson P, Nuti DE, LiPuma JJ, Kozel TR. Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody. J Med Microbiol. 2010 Jan;59(1):41–7.

Parmanik A, Das S, Kar B, Bose A, Dwivedi GR, Pandey MM. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Vol. 79, Current Microbiology. Springer; 2022.

Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, et al. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Vol. 12, Frontiers in Microbiology. Frontiers Media S.A.; 2021.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Vol. 12, International Journal of Nanomedicine. Dove Medical Press Ltd.; 2017. p. 1227–49.

Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223–9.

Bretonniére C, Jacqueline C, Caillon J, Guitton C, Le Mabecque V, Miégeville AF, et al. Efficacy of doripenem in the treatment of Pseudomonas aeruginosa experimental pneumonia versus imipenem and meropenem. Journal of Antimicrobial Chemotherapy. 2010 Sep 21;65(11):2423–7.

Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Vol. 148, Microbiology. 2002.

Lauman P, Dennis JJ. Advances in phage therapy: Targeting the Burkholderia cepacia complex. Vol. 13, Viruses. MDPI AG; 2021.

El-Halfawy OM, Naguib MM, Valvano MA. Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections. Antimicrob Resist Infect Control. 2017 Nov 25;6(1).

Posted

2023-12-10

Categories