Arduino Microcontroller Boards in Digital Learning for Science and STEM Education: A Bibliometric Analysis (2012-2022)
DOI:
https://doi.org/10.58445/rars.747Keywords:
STEM Education, Arduino, Microcontroller, Bibliometric Analysis, Digital LearningAbstract
An approximate assessment of the community's magnitude from a Google search revealed that the term "Arduino" generated more than 77 million search results, while the combined search term "Arduino AND digital learning" yielded around 16 million hits. This study aims to analyze the role of Arduino microcontroller boards in digital learning environments for science and STEM Education from a bibliometric perspective in the last decade. A total of 842 articles were analyzed from the Scopus database from 2012 to 2022. The findings revealed that the year 2021 witnessed the highest volume of publications, with the United States emerging as the most prolific country, followed by India, Indonesia, Brazil, and China. Among the authors, Yasmin B. Kafai garnered the highest frequency of citations, with Calin Galeriu, S Kubínová, J Šlégr, and James P. Grinias also being prominently cited. The keyword "Arduino" exhibits connections with terms such as "android," "Bluetooth," "distance learning," "e-learning," "low-cost," "simulation," and "IoT." This emerging trend reveals the strong connection among Arduino hardware, e-learning websites, and digital tools to scaffold skills among students. This study presents valuable findings that can serve as a valuable resource for future research.
References
Aparicio, M., Bacao, F., & Oliveira, T. (2016). An e-learning theoretical framework. An e-learning theoretical framework, (1), 292-307.
Behera SK (2013) E- and M-Learning: A comparative study. International Journal on New Trends in Education and Their Implications 4(3): 65–78.
Bevan, B., Petrich, M., & Wilkinson, K. (2014). Tinkering is serious play. Educational Leadership, 72(4), 28-33.
Blayone, T. J., vanOostveen, R., Barber, W., DiGiuseppe, M., & Childs, E. (2017). Democratizing digital learning: theorizing the fully online learning community model. International Journal of Educational Technology in Higher Education, 14, 1-16. https://doi.org/10.1186/s41239-017-0051-4.
Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A. (2008, April). The LilyPad Arduino: using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 423-432). https://doi.org/10.1145/1357054.1357123.
Chen, G. D., Nurkhamid, Wang, C. Y., Yang, S. H., Lu, W. Y., & Chang, C. K. (2013). Digital learning playground: Supporting authentic learning experiences in the classroom. Interactive Learning Environments, 21(2), 172-183. https://doi.org/10.1080/10494820.2012.705856.
Chen, Y., & Wu, C. (2017). The hot spot transformation in the research evolution of maker. Scientometrics, 113(3), 1307-1324. https://doi.org/10.1007/s11192-017-2542-4.
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070.
Galeriu, C., Edwards, S., & Esper, G. (2014). An Arduino investigation of simple harmonic motion. The Physics Teacher, 52(3), 157-159. https://doi.org/10.1119/1.4865518.
Gameil, A. A., & Al-Abdullatif, A. M. (2023). Using Digital Learning Platforms to Enhance the Instructional Design Competencies and Learning Engagement of Preservice Teachers. Education Sciences, 13(4), 334.
Goldie, J. G. S. (2016). Connectivism: A knowledge learning theory for the digital age?. Medical teacher, 38(10), 1064-1069. https://doi.org/10.3109/0142159X.2016.1173661.
Grinias, J. P., Whitfield, J. T., Guetschow, E. D., & Kennedy, R. T. (2016). An inexpensive, open-source USB Arduino data acquisition device for chemical instrumentation. https://doi.org/10.1021/acs.jchemed.6b00262.
Hintz, K. J., & Tabak, D. (1992). Microcontrollers: Architecture, implementation, and programming. New York: McGraw-Hill.
Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1-20. https://doi.org/10.1145/2576874.
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, 11. https://doi.org/10.1186/s40594-016-0046-z.
Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. https://doi.org/10.1016/j.cosrev.2021.100364.
Kubínová, S., & Šlégr, J. (2015). ChemDuino: Adapting Arduino for low-cost chemical measurements in lecture and laboratory. https://doi.org/10.1021/ed5008102.
Kumar Basak, S., Wotto, M., & Belanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. E-learning and Digital Media, 15(4), 191-216. doi: 10.1177/2042753018785180.
Le, L. T. B., Tran, T. T., & Tran, N. H. (2021). Challenges to STEM education in Vietnamese high school contexts. Heliyon, 7(12), e08649. https://doi.org/10.1016/j.heliyon.2021.e08649.
López-Belmonte, J., Marín-Marín, J. A., Soler-Costa, R., & Moreno-Guerrero, A. J. (2020). Arduino advances in web of science. A Scientific mapping of literary production. IEEE Access, 8, 128674-128682. https://doi.org/10.1109/ACCESS.2020.3008572.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017). Empirical studies on the Maker Movement, a promising approach to learning: A literature review. Entertainment Computing, 18, 57-78. https://doi.org/10.1016/j.entcom.2016.09.002.
Rusu, D. M., Mândru, S. D., Biriș, C. M., Petrașcu, O. L., Morariu, F., & Ianosi-Andreeva-Dimitrova, A. (2023). Soft robotics: A systematic review and bibliometric analysis. Micromachines, 14(2), 359. https://doi.org/10.3390/mi14020359.
Siemens, G. (2017). Connectivism. Foundations of learning and instructional design technology.
Soares, P. J., Oliveira, C., Morales, G., Arica, J., & Matias, I. (2019). State of the Art on Arduino and RFID. In New Global Perspectives on Industrial Engineering and Management: International Joint Conference ICIEOM-ADINGOR-IISE-AIM-ASEM (pp. 213-220). Springer International Publishing. https://doi.org/10.1007/978-3-319-93488-4_24.
Trento, D., Trento, T. P. W., & Krüger, E. (2020). Application of Arduino-Based Systems as Monitoring Tools in Indoor Comfort Studies: A Bibliometric Analysis. International Journal of Architectural Engineering Technology, 7, 1-12. https://doi.org/10.15377/2409-9821.2020.07.1.
Veletsianos, G. (2016). Digital Learning Environments. The Wiley Handbook of Learning Technology, 242–260. doi:10.1002/9781118736494.ch14.
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530–535. https://doi.org/10.1016/j.jmsy.2021.10.006.
Yang, K., Liu, X., & Chen, G. (2020). Global research trends in robot education in 2009-2019: A bibliometric análisis. International Journal of Information and Education Technology, 10(6), 476-481. https://doi.org/10.18178/ijiet.2020.10.6.1410.
Downloads
Posted
Categories
License
Copyright (c) 2023 Felicia, Anna, Amanda, Norbertus Krisnu Prabowo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.