The Birth of CRISPR/Cas9
DOI:
https://doi.org/10.58445/rars.737Keywords:
CRISPR, Cas9, Cas13, Genetic Engineering, CRISPR/Cas9, CRISPR/Cas13, History of CRISPRAbstract
CRISPR/Cas9 is a very important component of genetic engineering, originating from the
immune system of bacteria. It is far more efficient than any other method discovered as of 2023.
Despite this, however, many people interested in this tool are not aware of how it was
discovered and adapted. There are several contributors who helped build CRISPR/Cas9 into
what it is today, from Francisco Mojica, who discovered the system, to Le Cong, who identified
its purpose, and finally, Feng Zhang, who adapted the system for humans. This paper will
discuss the history of CRISPR, from its discovery to its uses today, along with how it continues
to be developed.
References
Bier, E. (2021). Gene drives gaining speed. Nature Reviews Genetics, 23(1), 5–22.
https://doi.org/10.1038/s41576-021-00386-0
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T.,
Nickstadt, A., & Bonas, U. (2009). Breaking the code of DNA binding specificity of tal-type
III effectors. Science, 326(5959), 1509–1512. https://doi.org/10.1126/science.1178811
Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly
interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal
origin. Microbiology, 151(8), 2551–2561. https://doi.org/10.1099/mic.0.28048-0
Caso, F., & Davies, B. (2021). Base editing and prime editing in Laboratory Animals.
Laboratory Animals, 56(1), 35–49. https://doi.org/10.1177/0023677221993895
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang,
W., Marraffini, L. A., & Zhang, F. (2013). Multiplex Genome Engineering using
CRISPR/Cas Systems. Science, 339(6121), 819–823.
https://doi.org/10.1126/science.1231143
Durai, S. (2005). Zinc finger nucleases: Custom-designed molecular scissors for Genome
Engineering of plant and mammalian cells. Nucleic Acids Research, 33(18), 5978–5990.
https://doi.org/10.1093/nar/gki912
Garrood, W. T., Cuber, P., Willis, K., Bernardini, F., Page, N. M., & Haghighat-Khah, R. E.
(2022). Driving down malaria transmission with engineered gene drives. Frontiers in
Genetics, 13. https://doi.org/10.3389/fgene.2022.891218
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A
programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity.
Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829 7
Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1–2), 18–28.
https://doi.org/10.1016/j.cell.2015.12.041
Mojica, F. J., Juez, G., & Rodriguez‐Valera, F. (1993). Transcription at different salinities
of haloferax mediterranei sequences adjacent to partially modified pstI sites. Molecular
Microbiology, 9(3), 613–621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
Mojica, F.J.M., Ferrer, C., Juez, G., & Rodríguez‐Valera, F. (1995). Long stretches of
short tandem repeats are present in the largest replicons of the archaea haloferax
mediterranei and haloferax volcanii and could be involved in replicon partitioning.
Molecular Microbiology, 17(1), 85–93.
https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x
Mojica, Francisco J.M., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005).
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign
genetic elements. Journal of Molecular Evolution, 60(2), 174–182.
https://doi.org/10.1007/s00239-004-0046-3
Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in yersinia pestis
acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional
tools for evolutionary studies. Microbiology, 151(3), 653–663.
https://doi.org/10.1099/mic.0.27437-0
Sulis, D. B., Jiang, X., Yang, C., Marques, B. M., Matthews, M. L., Miller, Z., Lan, K.,
Cofre-Vega, C., Liu, B., Sun, R., Sederoff, H., Bing, R. G., Sun, X., Williams, C. M.,
Jameel, H., Phillips, R., Chang, H., Peszlen, I., Huang, Y.-Y., … Wang, J. P. (2023).
Multiplex CRISPR editing of wood for Sustainable Fiber Production. Science, 381(6654),
–221. https://doi.org/10.1126/science.add4514
Tong, H., Huang, J., Xiao, Q., He, B., Dong, X., Liu, Y., Yang, X., Han, D., Wang, Z.,
Wang, X., Ying, W., Zhang, R., Wei, Y., Xu, C., Zhou, Y., Li, Y., Cai, M., Wang, Q., Xue,
M., … Yang, H. (2022). High-fidelity CAS13 variants for targeted RNA degradation with
minimal collateral effects. Nature Biotechnology, 41(1), 108–119.
https://doi.org/10.1038/s41587-022-01419-7
Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., & Arlotta, P. (2011). Efficient
construction of sequence-specific tal effectors for modulating mammalian transcription.
Nature Biotechnology, 29(2), 149–153. https://doi.org/10.1038/nbt.1775
clinicaltrials.gov ID NCT03057912,
https://clinicaltrials.gov/study/NCT03057912?distance=50&cond=NCT03057912&rank=1
clinicaltrials.gov ID NCT03745287,
https://clinicaltrials.gov/study/NCT03745287?distance=50&cond=NCT03745287%20&ran
k=1
Downloads
Posted
Categories
License
Copyright (c) 2023 Bianca Bolocan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.