Preprint / Version 1

Beyond Antiretrovirals: Exploring Gene Therapy Approaches in HIV Treatment

##article.authors##

  • Arshiya Bhasin Inventure Academy

DOI:

https://doi.org/10.58445/rars.720

Keywords:

HIV, Antiretrovirals, Gene Therapy

Abstract

Human Immunodeficiency Virus (HIV) is considered a major public health issue, having claimed the lives of 40.4 million people since the beginning of the epidemic in 1981, with ongoing transmission in all countries globally. Gene therapy has emerged as a promising avenue for combating HIV infection, offering potential advantages over conventional antiretroviral therapies. Currently, the most widely used therapy for the treatment of HIV is highly active antiretroviral therapy (HAART). Though this has significantly improved the quality of life for the people living with this virus, it comes with many challenges such as resistance mutations that allow for viral escape and adverse side effects. Gene therapy treatments for HIV aim to reconstitute the immune system with HIV-resistant cells and inhibit formation of HIV proteins that are vital for the survival of the virus, providing a potential functional cure for the disease with minimal adverse side effects for the patient. These strategies include the use of RNA and protein-based agents that target specific viral and host genes. There has been significant progress in the study of these therapies, some of which have even progressed to the clinical trial phase. This paper will review the different gene therapy approaches for HIV treatment as well as their advantages and disadvantages. 

References

Fanales-Belasio, E., Raimondo, M., Suligoi, B., & Buttò, S. (2010). HIV virology and pathogenetic mechanisms of infection: A brief overview. Annali dellIstituto Superiore Di Sanità, 46(1). https://doi.org/10.1590/S0021-25712010000100002

Yaniz-Galende, E., & Hajjar, R. J. (2014). Stem cell and gene therapy for cardiac regeneration. In Cardiac Regeneration and Repair (pp. 347–379). Elsevier. https://doi.org/10.1533/9780857096708.4.347

Doitsh, G., & Greene, W. C. (2016). Dissecting How CD4 T Cells Are Lost During HIV Infection. Cell Host & Microbe, 19(3), 280–291. https://doi.org/10.1016/j.chom.2016.02.012

Zhu, J., & Paul, W. E. (2008). CD4 T cells: Fates, functions, and faults. Blood, 112(5), 1557–1569. https://doi.org/10.1182/blood-2008-05-078154

Justiz Vaillant, A. A., & Naik, R. (2023). HIV-1 Associated Opportunistic Infections. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK539787/

Battistini Garcia, S. A., & Guzman, N. (2023). Acquired Immune Deficiency Syndrome CD4+ Count. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK513289/

Shaw, G. M., & Hunter, E. (2012). HIV Transmission. Cold Spring Harbor Perspectives in Medicine, 2(11), a006965–a006965. https://doi.org/10.1101/cshperspect.a006965

Chen, J., Zhou, T., Zhang, Y., Luo, S., Chen, H., Chen, D., Li, C., & Li, W. (2022). The reservoir of latent HIV. Frontiers in Cellular and Infection Microbiology, 12, 945956. https://doi.org/10.3389/fcimb.2022.945956

Wilen, C. B., Tilton, J. C., & Doms, R. W. (2012). HIV: Cell Binding and Entry. Cold Spring Harbor Perspectives in Medicine, 2(8), a006866–a006866. https://doi.org/10.1101/cshperspect.a006866

Kirchhoff, F. (2013). HIV Life Cycle: Overview. In T. J. Hope, M. Stevenson, & D. Richman (Eds.), Encyclopedia of AIDS (pp. 1–9). Springer New York. https://doi.org/10.1007/978-1-4614-9610-6_60-1

Arts, E. J., & Hazuda, D. J. (2012). HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine, 2(4), a007161. https://doi.org/10.1101/cshperspect.a007161

Eggleton, J. S., & Nagalli, S. (2023). Highly Active Antiretroviral Therapy (HAART). In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554533/

Palella, F. J., Delaney, K. M., Moorman, A. C., Loveless, M. O., Fuhrer, J., Satten, G. A., Aschman, D. J., & Holmberg, S. D. (1998). Declining Morbidity and Mortality among Patients with Advanced Human Immunodeficiency Virus Infection. New England Journal of Medicine, 338(13), 853–860. https://doi.org/10.1056/NEJM199803263381301

Hogg, R. S., Yip, B., Kully, C., Craib, K. J., O’Shaughnessy, M. V., Schechter, M. T., & Montaner, J. S. (1999). Improved survival among HIV-infected patients after initiation of triple-drug antiretroviral regimens. CMAJ: Canadian Medical Association Journal = Journal de l’Association Medicale Canadienne, 160(5), 659–665.

Mellberg, T., Gonzalez, V. D., Lindkvist, A., Edén, A., Sönnerborg, A., Sandberg, J. K., Svennerholm, B., & Gisslén, M. (2011). Rebound of residual plasma viremia after initial decrease following addition of intravenous immunoglobulin to effective antiretroviral treatment of HIV. AIDS Research and Therapy, 8(1), 21. https://doi.org/10.1186/1742-6405-8-21

Bassetti, S., Battegay, M., Furrer, H., Rickenbach, M., Flepp, M., Kaiser, L., Telenti, A., Vernazza, P. L., Bernasconi, E., & Sudre, P. (1999). Why is highly active antiretroviral therapy (HAART) not prescribed or discontinued? Swiss HIV Cohort Study. Journal of Acquired Immune Deficiency Syndromes (1999), 21(2), 114–119.

Valentina Montessori, Natasha Press, Marianne Harris, Linda Akagi, & Julio S.G. Montaner. (2004). Adverse effects of antiretroviral therapy for HIV infection. Canadian Medical Association Journal, 170(2), 229.

Bobbin, M. L., Burnett, J. C., & Rossi, J. J. (2015). RNA interference approaches for treatment of HIV-1 infection. Genome Medicine, 7(1), 50. https://doi.org/10.1186/s13073-015-0174-y

Kunze, C., Börner, K., Kienle, E., Orschmann, T., Rusha, E., Schneider, M., Radivojkov-Blagojevic, M., Drukker, M., Desbordes, S., Grimm, D., & Brack-Werner, R. (2018). Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia, 66(2), 413–427. https://doi.org/10.1002/glia.23254

Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., Liu, O., Wang, N., Lee, G., Bartsevich, V. V., Lee, Y.-L., Guschin, D. Y., Rupniewski, I., Waite, A. J., Carpenito, C., Carroll, R. G., S Orange, J., Urnov, F. D., Rebar, E. J., Ando, D., … June, C. H. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 26(7), 808–816. https://doi.org/10.1038/nbt1410

Yuan, J., Wang, J., Crain, K., Fearns, C., Kim, K. A., Hua, K. L., Gregory, P. D., Holmes, M. C., & Torbett, B. E. (2012). Zinc-finger Nuclease Editing of Human cxcr4 Promotes HIV-1 CD4+ T Cell Resistance and Enrichment. Molecular Therapy, 20(4), 849–859. https://doi.org/10.1038/mt.2011.310

DiGiusto, D. L., Cannon, P. M., Holmes, M. C., Li, L., Rao, A., Wang, J., Lee, G., Gregory, P. D., Kim, K. A., Hayward, S. B., Meyer, K., Exline, C., Lopez, E., Henley, J., Gonzalez, N., Bedell, V., Stan, R., & Zaia, J. A. (2016). Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Molecular Therapy - Methods & Clinical Development, 3, 16067. https://doi.org/10.1038/mtm.2016.67

Didigu, C. A., Wilen, C. B., Wang, J., Duong, J., Secreto, A. J., Danet-Desnoyers, G. A., Riley, J. L., Gregory, P. D., June, C. H., Holmes, M. C., & Doms, R. W. (2014). Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 123(1), 61–69. https://doi.org/10.1182/blood-2013-08-521229

Tebas, P., Jadlowsky, J. K., Shaw, P. A., Tian, L., Esparza, E., Brennan, A. L., Kim, S., Naing, S. Y., Richardson, M. W., Vogel, A. N., Maldini, C. R., Kong, H., Liu, X., Lacey, S. F., Bauer, A. M., Mampe, F., Richman, L. P., Lee, G., Ando, D., … Riley, J. L. (2021). CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 131(7), e144486. https://doi.org/10.1172/JCI144486

Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G., Holmes, M. C., Gregory, P. D., Ando, D. G., Kalos, M., Collman, R. G., Binder-Scholl, G., Plesa, G., Hwang, W.-T., Levine, B. L., & June, C. H. (2014). Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine, 370(10), 901–910. https://doi.org/10.1056/NEJMoa1300662

Wayengera, M. (2011). Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy. Theoretical Biology and Medical Modelling, 8(1), 26. https://doi.org/10.1186/1742-4682-8-26

Ji, H., Lu, P., Liu, B., Qu, X., Wang, Y., Jiang, Z., Yang, X., Zhong, Y., Yang, H., Pan, H., Zhao, L., Xu, J., Lu, H., & Zhu, H. (2018). Zinc-Finger Nucleases Induced by HIV-1 Tat Excise HIV-1 from the Host Genome in Infected and Latently Infected Cells. Molecular Therapy - Nucleic Acids, 12, 67–74. https://doi.org/10.1016/j.omtn.2018.04.014

Qu, X., Wang, P., Ding, D., Wang, X., Zhang, G., Zhou, X., Liu, L., Zhu, X., Zeng, H., & Zhu, H. (2014). Zinc finger nuclease: A new approach for excising HIV-1 proviral DNA from infected human T cells. Molecular Biology Reports, 41(9), 5819–5827. https://doi.org/10.1007/s11033-014-3456-3

Wayengera, M. (2011). Targeting persistent HIV infection: Where and how, if possible? HIV & AIDS Review, 10(1), 1–8. https://doi.org/10.1016/j.hivar.2011.01.002

Onafuwa-Nuga, A., McNamara, L. A., & Collins, K. L. (2010). Towards a cure for HIV: The identification and characterization of HIV reservoirs in optimally treated people. Cell Research, 20(11), 1185–1187. https://doi.org/10.1038/cr.2010.140

Bennett, M., & Akkina, R. (2013). Gene Therapy Strategies for HIV/AIDS: Preclinical Modeling in Humanized Mice. Viruses, 5(12), 3119–3141. https://doi.org/10.3390/v5123119

Pattanayak, V., Ramirez, C. L., Joung, J. K., & Liu, D. R. (2011). Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 8(9), 765–770. https://doi.org/10.1038/nmeth.1670

Maier, D. A., Brennan, A. L., Jiang, S., Binder-Scholl, G. K., Lee, G., Plesa, G., Zheng, Z., Cotte, J., Carpenito, C., Wood, T., Spratt, S. K., Ando, D., Gregory, P., Holmes, M. C., Perez, Elena. E., Riley, J. L., Carroll, R. G., June, C. H., & Levine, B. L. (2013). Efficient Clinical Scale Gene Modification via Zinc Finger Nuclease–Targeted Disruption of the HIV Co-receptor CCR5. Human Gene Therapy, 24(3), 245–258. https://doi.org/10.1089/hum.2012.172

Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/nrm3486

Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 7(1), 171–192. https://doi.org/10.1038/nprot.2011.431

Boissel, S., Jarjour, J., Astrakhan, A., Adey, A., Gouble, A., Duchateau, P., Shendure, J., Stoddard, B. L., Certo, M. T., Baker, D., & Scharenberg, A. M. (2014). megaTALs: A rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Research, 42(4), 2591–2601. https://doi.org/10.1093/nar/gkt1224

Yee, J.-K. (2016). Off-target effects of engineered nucleases. The FEBS Journal, 283(17), 3239–3248. https://doi.org/10.1111/febs.13760

Haber, J. E. (2000). Partners and pathways. Trends in Genetics, 16(6), 259–264. https://doi.org/10.1016/S0168-9525(00)02022-9

Thompson, L. H., & Schild, D. (2001). Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 477(1–2), 131–153. https://doi.org/10.1016/S0027-5107(01)00115-4

Deng, P., Carter, S., & Fink, K. (2019). Design, Construction, and Application of Transcription Activation-Like Effectors. In F. P. Manfredsson & M. J. Benskey (Eds.), Viral Vectors for Gene Therapy (Vol. 1937, pp. 47–58). Springer New York. https://doi.org/10.1007/978-1-4939-9065-8_3

Shi, B., Li, J., Shi, X., Jia, W., Wen, Y., Hu, X., Zhuang, F., Xi, J., & Zhang, L. (2017). TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus: JAIDS Journal of Acquired Immune Deficiency Syndromes, 74(2), 229–241. https://doi.org/10.1097/QAI.0000000000001190

Romito, M., Juillerat, A., Kok, Y. L., Hildenbeutel, M., Rhiel, M., Andrieux, G., Geiger, J., Rudolph, C., Mussolino, C., Duclert, A., Metzner, K. J., Duchateau, P., Cathomen, T., & Cornu, T. I. (2021). Preclinical Evaluation of a Novel TALEN Targeting CCR5 Confirms Efficacy and Safety in Conferring Resistance to HIV‐1 Infection. Biotechnology Journal, 16(1), 2000023. https://doi.org/10.1002/biot.202000023

Schwarze, L. I., Głów, D., Sonntag, T., Uhde, A., & Fehse, B. (2021). Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Therapy, 28(9), 588–601. https://doi.org/10.1038/s41434-021-00271-9

Mussolino, C., Alzubi, J., Fine, E. J., Morbitzer, R., Cradick, T. J., Lahaye, T., Bao, G., & Cathomen, T. (2014). TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research, 42(10), 6762–6773. https://doi.org/10.1093/nar/gku305

Fadel, H. J., Morrison, J. H., Saenz, D. T., Fuchs, J. R., Kvaratskhelia, M., Ekker, S. C., & Poeschla, E. M. (2014). TALEN Knockout of the PSIP1 Gene in Human Cells: Analyses of HIV-1 Replication and Allosteric Integrase Inhibitor Mechanism. Journal of Virology, 88(17), 9704–9717. https://doi.org/10.1128/JVI.01397-14

Llano, M., Delgado, S., Vanegas, M., & Poeschla, E. M. (2004). Lens Epithelium-derived Growth Factor/p75 Prevents Proteasomal Degradation of HIV-1 Integrase. Journal of Biological Chemistry, 279(53), 55570–55577. https://doi.org/10.1074/jbc.M408508200

Maertens, G., Cherepanov, P., Pluymers, W., Busschots, K., De Clercq, E., Debyser, Z., & Engelborghs, Y. (2003). LEDGF/p75 Is Essential for Nuclear and Chromosomal Targeting of HIV-1 Integrase in Human Cells. Journal of Biological Chemistry, 278(35), 33528–33539. https://doi.org/10.1074/jbc.M303594200

Sutherland, H. G., Newton, K., Brownstein, D. G., Holmes, M. C., Kress, C., Semple, C. A., & Bickmore, W. A. (2006). Disruption of Ledgf/Psip1 Results in Perinatal Mortality and Homeotic Skeletal Transformations. Molecular and Cellular Biology, 26(19), 7201–7210. https://doi.org/10.1128/MCB.00459-06

Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., & Zhang, G. (2016). In Vivo Delivery Systems for Therapeutic Genome Editing. International Journal of Molecular Sciences, 17(5), 626. https://doi.org/10.3390/ijms17050626

Ansari, W. A., Chandanshive, S. U., Bhatt, V., Nadaf, A. B., Vats, S., Katara, J. L., Sonah, H., & Deshmukh, R. (2020). Genome Editing in Cereals: Approaches, Applications and Challenges. International Journal of Molecular Sciences, 21(11), 4040. https://doi.org/10.3390/ijms21114040

Mengstie, M. A., & Wondimu, B. Z. (2021). Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics: Targets and Therapy, Volume 15, 353–361. https://doi.org/10.2147/BTT.S326422

Mei, Y., Wang, Y., Chen, H., Sun, Z. S., & Ju, X.-D. (2016). Recent Progress in CRISPR/Cas9 Technology. Journal of Genetics and Genomics, 43(2), 63–75. https://doi.org/10.1016/j.jgg.2016.01.001

Hou, P., Chen, S., Wang, S., Yu, X., Chen, Y., Jiang, M., Zhuang, K., Ho, W., Hou, W., Huang, J., & Guo, D. (2015). Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific Reports, 5(1), 15577. https://doi.org/10.1038/srep15577

Li, C., Guan, X., Du, T., Jin, W., Wu, B., Liu, Y., Wang, P., Hu, B., Griffin, G. E., Shattock, R. J., & Hu, Q. (2015). Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 96(8), 2381–2393. https://doi.org/10.1099/vir.0.000139

Yu, S., Yao, Y., Xiao, H., Li, J., Liu, Q., Yang, Y., Adah, D., Lu, J., Zhao, S., Qin, L., & Chen, X. (2018). Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Human Gene Therapy, 29(1), 51–67. https://doi.org/10.1089/hum.2017.032

Liu, Z., Chen, S., Jin, X., Wang, Q., Yang, K., Li, C., Xiao, Q., Hou, P., Liu, S., Wu, S., Hou, W., Xiong, Y., Kong, C., Zhao, X., Wu, L., Li, C., Sun, G., & Guo, D. (2017). Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell & Bioscience, 7(1), 47. https://doi.org/10.1186/s13578-017-0174-2

Wu, Y. (2004). HIV-1 gene expression: Lessons from provirus and non-integrated DNA. Retrovirology, 1(1), 13. https://doi.org/10.1186/1742-4690-1-13

Shah, S., Alexaki, A., Pirrone, V., Dahiya, S., Nonnemacher, M. R., & Wigdahl, B. (2014). Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virology Journal, 11(1), 92. https://doi.org/10.1186/1743-422X-11-92

Hu, W., Kaminski, R., Yang, F., Zhang, Y., Cosentino, L., Li, F., Luo, B., Alvarez-Carbonell, D., Garcia-Mesa, Y., Karn, J., Mo, X., & Khalili, K. (2014). RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences, 111(31), 11461–11466. https://doi.org/10.1073/pnas.1405186111

Kaminski, R., Bella, R., Yin, C., Otte, J., Ferrante, P., Gendelman, H. E., Li, H., Booze, R., Gordon, J., Hu, W., & Khalili, K. (2016). Excision of HIV-1 DNA by gene editing: A proof-of-concept in vivo study. Gene Therapy, 23(8–9), 690–695. https://doi.org/10.1038/gt.2016.41

Yin, C., Zhang, T., Qu, X., Zhang, Y., Putatunda, R., Xiao, X., Li, F., Xiao, W., Zhao, H., Dai, S., Qin, X., Mo, X., Young, W.-B., Khalili, K., & Hu, W. (2017). In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Molecular Therapy, 25(5), 1168–1186. https://doi.org/10.1016/j.ymthe.2017.03.012

Behr, M., Zhou, J., Xu, B., & Zhang, H. (2021). In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharmaceutica Sinica B, 11(8), 2150–2171. https://doi.org/10.1016/j.apsb.2021.05.020

Wang, G., Zhao, N., Berkhout, B., & Das, A. T. (2016). CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Molecular Therapy, 24(3), 522–526. https://doi.org/10.1038/mt.2016.24

Wang, Z., Pan, Q., Gendron, P., Zhu, W., Guo, F., Cen, S., Wainberg, M. A., & Liang, C. (2016). CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports, 15(3), 481–489. https://doi.org/10.1016/j.celrep.2016.03.042

Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Journal of Biological Chemistry, 284(27), 17897–17901. https://doi.org/10.1074/jbc.R900012200

Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498. https://doi.org/10.1038/35078107

Rossi, J. J. (2006). RNAi as a treatment for HIV-1 infection. BioTechniques, 40(4S), S25–S29. https://doi.org/10.2144/000112167

Taxman, D. J., Moore, C. B., Guthrie, E. H., & Huang, M. T.-H. (2010). Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown. In M. Sioud (Ed.), RNA Therapeutics (Vol. 629, pp. 139–156). Humana Press. https://doi.org/10.1007/978-1-60761-657-3_10

Anderson, J., & Akkina, R. (2005). HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Research and Therapy, 2(1), 1. https://doi.org/10.1186/1742-6405-2-1

Anderson, J., & Akkina, R. (2005). CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology, 2(1), 53. https://doi.org/10.1186/1742-4690-2-53

Kim, S.-S., Peer, D., Kumar, P., Subramanya, S., Wu, H., Asthana, D., Habiro, K., Yang, Y.-G., Manjunath, N., Shimaoka, M., & Shankar, P. (2010). RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 18(2), 370–376. https://doi.org/10.1038/mt.2009.271

Yamamoto, T., Miyoshi, H., Yamamoto, N., Yamamoto, N., Inoue, J. -i., & Tsunetsugu-Yokota, Y. (2006). Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood, 108(10), 3305–3312. https://doi.org/10.1182/blood-2006-04-014829

Kruize, Z., & Kootstra, N. A. (2019). The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Frontiers in Microbiology, 10, 2828. https://doi.org/10.3389/fmicb.2019.02828

Singh, A., Palanichamy, J. K., Ramalingam, P., Kassab, M. A., Bhagat, M., Andrabi, R., Luthra, K., Sinha, S., & Chattopadhyay, P. (2014). Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA. Journal of Antimicrobial Chemotherapy, 69(2), 404–415. https://doi.org/10.1093/jac/dkt348

Zhou, J., Neff, C. P., Liu, X., Zhang, J., Li, H., Smith, D. D., Swiderski, P., Aboellail, T., Huang, Y., Du, Q., Liang, Z., Peng, L., Akkina, R., & Rossi, J. J. (2011). Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice. Molecular Therapy, 19(12), 2228–2238. https://doi.org/10.1038/mt.2011.207

DiGiusto, D. L., Krishnan, A., Li, L., Li, H., Li, S., Rao, A., Mi, S., Yam, P., Stinson, S., Kalos, M., Alvarnas, J., Lacey, S. F., Yee, J.-K., Li, M., Couture, L., Hsu, D., Forman, S. J., Rossi, J. J., & Zaia, J. A. (2010). RNA-Based Gene Therapy for HIV with Lentiviral Vector–Modified CD34 + Cells in Patients Undergoing Transplantation for AIDS-Related Lymphoma. Science Translational Medicine, 2(36). https://doi.org/10.1126/scitranslmed.3000931

Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457(7228), 426–433. https://doi.org/10.1038/nature07758

Martínez, M. A. (2009). Progress in the Therapeutic Applications of siRNAs Against HIV-1. In M. Sioud (Ed.), siRNA and miRNA Gene Silencing (Vol. 487, pp. 1–26). Humana Press. https://doi.org/10.1007/978-1-60327-547-7_17

Cuevas, J. M., Geller, R., Garijo, R., López-Aldeguer, J., & Sanjuán, R. (2015). Extremely High Mutation Rate of HIV-1 In Vivo. PLOS Biology, 13(9), e1002251. https://doi.org/10.1371/journal.pbio.1002251

Strayer, D. S., Branco, F., Landré, J., BouHamdan, M., Shaheen, F., & Pomerantz, R. J. (2002). Combination Genetic Therapy to Inhibit HIV-1. Molecular Therapy, 5(1), 33–41. https://doi.org/10.1006/mthe.2001.0513

Li, M.-J., Kim, J., Li, S., Zaia, J., Yee, J.-K., Anderson, J., Akkina, R., & Rossi, J. J. (2005). Long-Term Inhibition of HIV-1 Infection in Primary Hematopoietic Cells by Lentiviral Vector Delivery of a Triple Combination of Anti-HIV shRNA, Anti-CCR5 Ribozyme, and a Nucleolar-Localizing TAR Decoy. Molecular Therapy, 12(5), 900–909. https://doi.org/10.1016/j.ymthe.2005.07.524

Anderson, J., Li, M.-J., Palmer, B., Remling, L., Li, S., Yam, P., Yee, J.-K., Rossi, J., Zaia, J., & Akkina, R. (2007). Safety and Efficacy of a Lentiviral Vector Containing Three Anti-HIV Genes—CCR5 Ribozyme, Tat-rev siRNA, and TAR Decoy—In SCID-hu Mouse–Derived T Cells. Molecular Therapy, 15(6), 1182–1188. https://doi.org/10.1038/sj.mt.6300157

Muthuswamy, V. (2013). Ethical issues in clinical research. Perspectives in Clinical Research, 4(1), 9. https://doi.org/10.4103/2229-3485.106369

Stan, R., & Zaia, J. A. (2014). Practical Considerations in Gene Therapy for HIV Cure. Current HIV/AIDS Reports, 11(1), 11–19. https://doi.org/10.1007/s11904-013-0197-1

Posted

2023-11-18

Categories