Preprint / Version 1

Hypotheses and Current Treatment Options For Castration Resistance In Prostate Cancer

##article.authors##

  • Angela Zhuang Weston High School

DOI:

https://doi.org/10.58445/rars.680

Keywords:

Biomedical and health sciences, genetics and molecular biology of disease, cancer, prostate cancer, androgen receptor, androgen deprivation therapy, castration resistance

Abstract

Prostate cancer (PCa) is the most common male cancer and is known to affect around one in eight males in the United States. However, it tends to progress slowly and is even curable in the early stages of the disease. Androgen receptor (AR) hyperactivity and overexpression are present in almost all cases of PCa. Targeting AR with androgen receptor signaling inhibitors (ARSIs) has proven effective at slowing tumor progression by chemically castrating the patient. However, this is not a permanent solution, as all tumors treated with ARSIs eventually become castration-resistant PCa (CRPC). This could be due to a myriad of reasons, such as mutated variants of AR, selective pressure from the use of ARSI drugs eliminating cells that express higher AR (AR+), or the activation of alternative pathways.

Additionally, mutated variants of AR may bind to precursors or splice variants of androgens and be unaffected by ARSIs; the tumors themselves may produce more androgens, or the tumor cells may become androgen-independent through the alternate pathways. Further treatment is based on a case-to-case basis depending on various clinical or molecular features, such as the patient’s performance status, cancer grade or stage, and dynamic changes in prostate-specific antigen. Options include chemotherapy, intensified androgen deprivation therapy, and targeted therapy for specific molecules. Research for more effective approaches to treating CRPC is currently underway.

References

Anassi, E., & Ndefo, U. A. (2011). Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T, 36(4), 197-202. https://www.ncbi.nlm.nih.gov/pubmed/21572775

Antonarakis, E. S., & Armstrong, A. J. (2011). Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer. Prostate Cancer Prostatic Dis, 14(3), 192-205. https://doi.org/10.1038/pcan.2011.23

Castellon, E. A., Indo, S., & Contreras, H. R. (2022). Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int J Mol Sci, 23(23). https://doi.org/10.3390/ijms232314917

Cato, L., de Tribolet-Hardy, J., Lee, I., Rottenberg, J. T., Coleman, I., Melchers, D., Houtman, R., Xiao, T., Li, W., Uo, T., Sun, S., Kuznik, N. C., Goppert, B., Ozgun, F., van Royen, M. E., Houtsmuller, A. B., Vadhi, R., Rao, P. K., Li, L., . . . Brown, M. (2019). ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell, 35(3), 401-413 e406. https://doi.org/10.1016/j.ccell.2019.01.008

Chandrasekar, T., Yang, J. C., Gao, A. C., & Evans, C. P. (2015). Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Translational Andrology and Urology, 4(3), 365-380. https://tau.amegroups.com/article/view/6474

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708226/pdf/tau-04-03-365.pdf

Chaves, L. P., Melo, C. M., Saggioro, F. P., Reis, R. B. D., & Squire, J. A. (2021). Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel), 12(12). https://doi.org/10.3390/genes12121900

Chen, Y., Zhou, Q., Hankey, W., Fang, X., & Yuan, F. (2022). Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis, 13(7), 632. https://doi.org/10.1038/s41419-022-05084-1

Cristofani, R., Montagnani Marelli, M., Cicardi, M. E., Fontana, F., Marzagalli, M., Limonta, P., Poletti, A., & Moretti, R. M. (2018). Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis, 9(9), 889. https://doi.org/10.1038/s41419-018-0866-5

D'Andrea, A. D. (2018). Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst), 71, 172-176. https://doi.org/10.1016/j.dnarep.2018.08.021

Desai, K., McManus, J. M., & Sharifi, N. (2021). Hormonal Therapy for Prostate Cancer. Endocr Rev, 42(3), 354-373. https://doi.org/10.1210/endrev/bnab002

Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C., & Abraham, R. T. (2017). The PI3K Pathway in Human Disease. Cell, 170(4), 605-635. https://doi.org/10.1016/j.cell.2017.07.029

Gandaglia, G., Abdollah, F., Schiffmann, J., Trudeau, V., Shariat, S. F., Kim, S. P., Perrotte, P., Montorsi, F., Briganti, A., Trinh, Q. D., Karakiewicz, P. I., & Sun, M. (2014). Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate, 74(2), 210-216. https://doi.org/10.1002/pros.22742

Hussain, M., Fizazi, K., Saad, F., Rathenborg, P., Shore, N., Ferreira, U., Ivashchenko, P., Demirhan, E., Modelska, K., Phung, D., Krivoshik, A., & Sternberg, C. N. (2018). Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 378(26), 2465-2474. https://doi.org/10.1056/NEJMoa1800536

Jacob, A., Raj, R., Allison, D. B., & Myint, Z. W. (2021). Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers (Basel), 13(21). https://doi.org/10.3390/cancers13215417

Jamroze, A., Chatta, G., & Tang, D. G. (2021). Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett, 518, 1-9. https://doi.org/10.1016/j.canlet.2021.06.006

Jogi, A., Vaapil, M., Johansson, M., & Pahlman, S. (2012). Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci, 117(2), 217-224. https://doi.org/10.3109/03009734.2012.659294

Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer, 10(3), 194-204. https://doi.org/10.1038/nrc2803

Kirby, M., Hirst, C., & Crawford, E. D. (2011). Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract, 65(11), 1180-1192. https://doi.org/10.1111/j.1742-1241.2011.02799.x

Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68-75. https://doi.org/10.4161/org.4.2.5851

Lowrance, W., Dreicer, R., Jarrard, D. F., Scarpato, K. R., Kim, S. K., Kirkby, E., Buckley, D. I., Griffin, J. C., & Cookson, M. S. (2023). Updates to Advanced Prostate Cancer: AUA/SUO Guideline (2023). J Urol, 209(6), 1082-1090. https://doi.org/10.1097/JU.0000000000003452

Luo, J., Wang, D., Wan, X., Xu, Y., Lu, Y., Kong, Z., Li, D., Gu, W., Wang, C., Li, Y., Ji, C., Gu, S., & Xu, Y. (2020). Crosstalk Between AR and Wnt Signaling Promotes Castration-Resistant Prostate Cancer Growth. Onco Targets Ther, 13, 9257-9267. https://doi.org/10.2147/OTT.S245861

Moreira, D. M., Howard, L. E., Sourbeer, K. N., Amarasekara, H. S., Chow, L. C., Cockrell, D. C., Pratson, C. L., Hanyok, B. T., Aronson, W. J., Kane, C. J., Terris, M. K., Amling, C. L., Cooperberg, M. R., & Freedland, S. J. (2017). Predicting Time From Metastasis to Overall Survival in Castration-Resistant Prostate Cancer: Results From SEARCH. Clin Genitourin Cancer, 15(1), 60-66 e62. https://doi.org/10.1016/j.clgc.2016.08.018

Murillo-Garzon, V., & Kypta, R. (2017). WNT signalling in prostate cancer. Nat Rev Urol, 14(11), 683-696. https://doi.org/10.1038/nrurol.2017.144

Saad, F. (2013). Evidence for the efficacy of enzalutamide in postchemotherapy metastatic castrate-resistant prostate cancer. Ther Adv Urol, 5(4), 201-210. https://doi.org/10.1177/1756287213490054

Sartor, O., de Bono, J., Chi, K. N., Fizazi, K., Herrmann, K., Rahbar, K., Tagawa, S. T., Nordquist, L. T., Vaishampayan, N., El-Haddad, G., Park, C. H., Beer, T. M., Armour, A., Perez-Contreras, W. J., DeSilvio, M., Kpamegan, E., Gericke, G., Messmann, R. A., Morris, M. J., . . . Investigators, V. (2021). Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 385(12), 1091-1103. https://doi.org/10.1056/NEJMoa2107322

Schatten, H. (2018). Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. Adv Exp Med Biol, 1095, 1-14. https://doi.org/10.1007/978-3-319-95693-0_1

Seruga, B., & Tannock, I. F. (2011). Chemotherapy-based treatment for castration-resistant prostate cancer. J Clin Oncol, 29(27), 3686-3694. https://doi.org/10.1200/JCO.2010.34.3996

Shorning, B. Y., Dass, M. S., Smalley, M. J., & Pearson, H. B. (2020). The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci, 21(12). https://doi.org/10.3390/ijms21124507

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA Cancer J Clin, 73(1), 17-48. https://doi.org/10.3322/caac.21763

Tan, M. H., Li, J., Xu, H. E., Melcher, K., & Yong, E. L. (2015). Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin, 36(1), 3-23. https://doi.org/10.1038/aps.2014.18

Wang, Y., Chen, J., Wu, Z., Ding, W., Gao, S., Gao, Y., & Xu, C. (2021). Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol, 178(2), 239-261. https://doi.org/10.1111/bph.15300

Weiner, A. B., Cohen, J. E., DeLancey, J. O., Schaeffer, E. M., & Auffenberg, G. B. (2020). Surgical versus Medical Castration for Metastatic Prostate Cancer: Use and Overall Survival in a National Cohort. J Urol, 203(5), 933-939. https://doi.org/10.1097/JU.0000000000000684

Xie, J., Chen, X., Wang, W., Guan, Z., Hou, J., & Lin, J. (2022). Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy. J Cancer, 13(7), 2138-2149. https://doi.org/10.7150/jca.65329

Yang, R., Liu, Y., Wang, Y., Wang, X., Ci, H., Song, C., & Wu, S. (2021). Low PRRX1 expression and high ZEB1 expression are significantly correlated with epithelial-mesenchymal transition and tumor angiogenesis in non-small cell lung cancer. Medicine (Baltimore), 100(4), e24472. https://doi.org/10.1097/MD.0000000000024472

Zhang, H., Zhou, Y., Xing, Z., Sah, R. K., Hu, J., & Hu, H. (2022). Androgen Metabolism and Response in Prostate Cancer Anti-Androgen Therapy Resistance. Int J Mol Sci, 23(21). https://doi.org/10.3390/ijms232113521

Zheng, Z., Li, J., Liu, Y., Shi, Z., Xuan, Z., Yang, K., Xu, C., Bai, Y., Fu, M., Xiao, Q., Sun, H., & Shao, C. (2022). The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel), 14(19). https://doi.org/10.3390/cancers14194877

Downloads

Posted

2023-11-02