Preprint / Version 1

Does Physical Activity In Athletes Affect The SCFA Production By Gut Microflora Influencing The Gut-Brain Axis?

##article.authors##

  • Anushka Rammohan Eastlake High SChool

DOI:

https://doi.org/10.58445/rars.673

Keywords:

gut microflora, exercise, gut-brain axis, bacteria, SCFAs

Abstract

The microbiome in the gut contains over 100 trillion microbes (Rinninella et al., 2019), with a diversity of between 300 and 1000 bacterial species (Guinane and Cotter 2013). The anaerobic gut microflora can produce 500 to 600 mmols of short-chain fatty acids (SCFAs) daily in the lumen of the large intestine. SCFAs play a key role in gut homeostasis through communication with the central nervous system. Communication between these luminal metabolites and the nervous system - gut brain axis - is established through the vagus nerve. Vagal afferent and efferent nerves establish the bidirectional talk between the gut and the central nervous system. Among many parameters that can fluctuate the SCFA production in the gut, regular physical exercise has shown positive effect on the gut-brain axis through vagal afferent activation via free fatty acid receptors (FFA) The correlation between aerobic exercise with VO2 of 50% and the increased SCFA production has been analyzed in this review. 7 types of athletic activities have been considered to study the effect of SCFA production. Rugby players, competitive cyclists, female endurance runners, female athletes, elderly male athletes, elderly men subjected to 6 week exercise programs, and subjects participating in a 6 week endurance exercise program have been reviewed. The results of these studies suggest that strenuous physical activity leads to increased SCFA production in comparison to control groups. These SCFAs impact mood, behavior, as well as capability of muscle hypertrophy. This is highly relevant to athletes. This hormonal response is relayed to the central nervous system via the afferent vagus nerve. 

References

Allen, J. M., Mailing, L. J., Niemiro, G. M., Moore, R., Cook, M. D., White, B. A., Holscher, H. D., & Woods, J. A. (2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Medicine and science in sports and exercise, 50(4), 747–757. https://doi.org/10.1249/MSS.0000000000001495

Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627

Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D., & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS one, 12(2), e0171352. https://doi.org/10.1371/journal.pone.0171352

Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13, 43. https://doi.org/10.1186/s12970-016-0155-6

Dalton, A., Mermier, C., & Zuhl, M. (2019). Exercise influence on the microbiome-gut-brain axis. Gut microbes, 10(5), 555–568. https://doi.org/10.1080/19490976.2018.1562268

den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54(9), 2325–2340. https://doi.org/10.1194/jlr.R036012

Fleming, M. A., 2nd, Ehsan, L., Moore, S. R., & Levin, D. E. (2020). The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterology research and practice, 2020, 8024171. https://doi.org/10.1155/2020/8024171

Guinane, C. M., & Cotter, P. D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic advances in gastroenterology, 6(4), 295–308. https://doi.org/10.1177/1756283X13482996

Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., & McArthur, S. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), 55. https://doi.org/10.1186/s40168-018-0439-y

Longo, S., Rizza, S., & Federici, M. (2023). Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta diabetologica, 60(8), 1007–1017. https://doi.org/10.1007/s00592-023-02088-x

Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-2920.13589

Mittal, R., Debs, L. H., Patel, A. P., Nguyen, D., Patel, K., O'Connor, G., Grati, M., Mittal, J., Yan, D., Eshraghi, A. A., Deo, S. K., Daunert, S., & Liu, X. Z. (2017). Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. Journal of cellular physiology, 232(9), 2359–2372. https://doi.org/10.1002/jcp.25518

Morishima, S., Aoi, W., Kawamura, A., Kawase, T., Takagi, T., Naito, Y., Tsukahara, T., & Inoue, R. (2021). Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners. Journal of clinical biochemistry and nutrition, 68(3), 253–258. https://doi.org/10.3164/jcbn.20-131

Natividad, J. M., & Verdu, E. F. (2013). Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological research, 69(1), 42–51. https://doi.org/10.1016/j.phrs.2012.10.007

Pérez-Reytor, D., Puebla, C., Karahanian, E., & García, K. (2021). Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Frontiers in physiology, 12, 650313. https://doi.org/10.3389/fphys.2021.650313

Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., Sodergren, E., & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. https://doi.org/10.1186/s40168-017-0320-4

Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D. Q., Sperandio, M., & Di Ciaula, A. (2022). Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International journal of molecular sciences, 23(3), 1105. https://doi.org/10.3390/ijms23031105

Quigley E. M. (2013). Gut bacteria in health and disease. Gastroenterology & hepatology, 9(9), 560–569.

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

Šoltys, K., Lendvorský, L., Hric, I., Baranovičová, E., Penesová, A., Mikula, I., Bohmer, M., Budiš, J., Vávrová, S., Grones, J., Grendar, M., Kolísek, M., & Bielik, V. (2021). Strenuous Physical Training, Physical Fitness, Body Composition and Bacteroides to Prevotella Ratio in the Gut of Elderly Athletes. Frontiers in physiology, 12, 670989. https://doi.org/10.3389/fphys.2021.670989

Stilling, R. M., van de Wouw, M., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2016). The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochemistry international, 99, 110–132. https://doi.org/10.1016/j.neuint.2016.06.011

Taniguchi, H., Tanisawa, K., Sun, X., Kubo, T., Hoshino, Y., Hosokawa, M., Takeyama, H., & Higuchi, M. (2018). Effects of short-term endurance exercise on gut microbiota in elderly men. Physiological reports, 6(23), e13935. https://doi.org/10.14814/phy2.13935

van de Wouw, M., Boehme, M., Lyte, J. M., Wiley, N., Strain, C., O'Sullivan, O., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2018). Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. The Journal of physiology, 596(20), 4923–4944. https://doi.org/10.1113/JP276431

Zhang, Y. J., Li, S., Gan, R. Y., Zhou, T., Xu, D. P., & Li, H. B. (2015). Impacts of gut bacteria on human health and diseases. International journal of molecular sciences, 16(4), 7493–7519. https://doi.org/10.3390/ijms16047493

Zheng, H., Xu, P., Jiang, Q., Xu, Q., Zheng, Y., Yan, J., Ji, H., Ning, J., Zhang, X., Li, C., Zhang, L., Li, Y., Li, X., Song, W., & Gao, H. (2021). Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. Microbiome, 9(1), 145. https://doi.org/10.1186/s40168-021-01088-9

Additional Files

Posted

2023-10-30

Categories