Preprint / Version 1

Myotonic Dystrophy Type 1: A Comprehensive Literary Review

DM1 Etiology, Treatments, and Future Outlook

##article.authors##

  • Aditya Tripathi Polygence

DOI:

https://doi.org/10.58445/rars.430

Keywords:

Myotonic dystrophy type 1, Expanded trinucleotide repetition, Disease pathogenesis, Clinical trials, Future developments

Abstract

Myotonic Dystrophy Type 1 (DM1) is a degenerative neuromuscular disease that costs 448 million dollars in the US annually to combat. Caused by the abnormal expansion of the CTG sequence located along the Dystrophia Myotonica Protein Kinase (DMPK) gene of chromosome 19, DM1 results in several different observable effects that include, but are not limited to cataracts, facial weakness, hypersomnia, cardiomyopathy, and arrhythmias. Symptoms are attributed to the rapid degeneration of muscles that leads to weakened control over the heart, lungs, gastrointestinal systems, and face. Treatments for DM1 are limited to minimizing morbidity such as through assistive mobility devices. In pursuit of a cure, pre-clinical models have provided a foundation for deeper investigations into the pathogenesis of DM1. Ongoing studies utilize molecular genetics and pharmacology to target the underlying molecular mechanisms, fortunately, many of these studies have shown potential in pre-clinical trials. Antisense therapy targets expanded trinucleotide regions and has demonstrated recovery of cardiac muscle in mice. CRISPR/SpCas9, when injected, has shown beneficial effects in several DM1 animal models. Furthermore, given the pre-clinical success of the novel pharmacologic agent AOC 1001, clinical trials have been initiated and are ongoing. Unfortunately, due to the nuances and difficulties in treating DM1, there is currently no Food and Drug Administration-approved disease-modifying therapies, and as such DM1 represents a growing public health concern. 

References

Meola, G., & Cardani, R. (2015). Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochimica et biophysica acta, 1852(4), 594–606. https://doi.org/10.1016/j.bbadis.2014.05.019

Thornton C. A. (2014). Myotonic dystrophy. Neurologic clinics, 32(3), 705–viii. https://doi.org/10.1016/j.ncl.2014.04.011

Izzo, M., Battistini, J., Provenzano, C., Martelli, F., Cardinali, B., & Falcone, G. (2022). Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. International journal of molecular sciences, 23(9), 4622. https://doi.org/10.3390/ijms23094622

Pascual-Gilabert, M., Artero, R., & López-Castel, A. (2023). The myotonic dystrophy type 1 drug development pipeline: 2022 edition. Drug discovery today, 28(3), 103489. https://doi.org/10.1016/j.drudis.2023.103489

Kamsteeg, E. J., Kress, W., Catalli, C., Hertz, J. M., Witsch-Baumgartner, M., Buckley, M. F., van Engelen, B. G., Schwartz, M., & Scheffer, H. (2012). Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. European journal of human genetics : EJHG, 20(12), 1203–1208. https://doi.org/10.1038/ejhg.2012.108

Hagerman, K. A., Howe, S. J., Heatwole, C. R., & Christopher Project Reference Group (2019). The myotonic dystrophy experience: a North American cross-sectional study. Muscle & nerve, 59(4), 457–464. https://doi.org/10.1002/mus.26420

Howe, S. J., Lapidus, D., Hull, M., Yeaw, J., Stevenson, T., & Sampson, J. B. (2022). Healthcare resource utilization, total costs, and comorbidities among patients with myotonic dystrophy using U.S. insurance claims data from 2012 to 2019. Orphanet journal of rare diseases, 17(1), 79. https://doi.org/10.1186/s13023-022-02241-9

Larkindale, J., Yang, W., Hogan, P. F., Simon, C. J., Zhang, Y., Jain, A., Habeeb-Louks, E. M., Kennedy, A., & Cwik, V. A. (2014). Cost of illness for neuromuscular diseases in the United States. Muscle & nerve, 49(3), 431–438. https://doi.org/10.1002/mus.23942

Bird, T. D. (1999). Myotonic Dystrophy Type 1. In M. P. Adam (Eds.) et. al., GeneReviews®. University of Washington, Seattle.

Lee, J. E., & Cooper, T. A. (2009). Pathogenic mechanisms of myotonic dystrophy. Biochemical Society transactions, 37(Pt 6), 1281–1286. https://doi.org/10.1042/BST0371281

Weijs, R., Okkersen, K., van Engelen, B., Küsters, B., Lammens, M., Aronica, E., Raaphorst, J., & van Cappellen van Walsum, A. M. (2021). Human brain pathology in myotonic dystrophy type 1: A systematic review. Neuropathology : official journal of the Japanese Society of Neuropathology, 41(1), 3–20. https://doi.org/10.1111/neup.12721

Mahadevan, M. S., Yadava, R. S., & Mandal, M. (2021). Cardiac Pathology in Myotonic Dystrophy Type 1. International journal of molecular sciences, 22(21), 11874. https://doi.org/10.3390/ijms222111874

Poulin, H., Mercier, A., Djemai, M., Pouliot, V., Deschenes, I., Boutjdir, M., Puymirat, J., & Chahine, M. (2021). iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Scientific reports, 11(1), 2500. https://doi.org/10.1038/s41598-021-82007-8

Kawada, R., Jonouchi, T., Kagita, A., Sato, M., Hotta, A., & Sakurai, H. (2023). Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs. Scientific reports, 13(1), 94. https://doi.org/10.1038/s41598-022-26614-z

Gomes-Pereira, M., Cooper, T. A., & Gourdon, G. (2011). Myotonic dystrophy mouse models: towards rational therapy development. Trends in molecular medicine, 17(9), 506–517. https://doi.org/10.1016/j.molmed.2011.05.004

Peterson, J. A. M., & Cooper, T. A. (2022). Clinical and Molecular Insights into Gastrointestinal Dysfunction in Myotonic Dystrophy Types 1 & 2. International journal of molecular sciences, 23(23), 14779. https://doi.org/10.3390/ijms232314779

Moshirfar, M., Webster, C. R., Seitz, T. S., Ronquillo, Y. C., & Hoopes, P. C. (2022). Ocular Features and Clinical Approach to Cataract and Corneal Refractive Surgery in Patients with Myotonic Dystrophy. Clinical ophthalmology (Auckland, N.Z.), 16, 2837–2842. https://doi.org/10.2147/OPTH.S372633

Minier, L., Lignier, B., Bouvet, C., Gallais, B., & Camart, N. (2018). A Review of Psychopathology Features, Personality, and Coping in Myotonic Dystrophy Type 1. Journal of neuromuscular diseases, 5(3), 279–294. https://doi.org/10.3233/JND-180310

Simoncini, C., Spadoni, G., Lai, E., Santoni, L., Angelini, C., Ricci, G., & Siciliano, G. (2020). Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Frontiers in neurology, 11, 624. https://doi.org/10.3389/fneur.2020.00624

Liu, J., Guo, Z. N., Yan, X. L., Yang, Y., & Huang, S. (2021). Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Frontiers in aging neuroscience, 13, 755392. https://doi.org/10.3389/fnagi.2021.755392

Nieuwenhuis, S., Okkersen, K., Widomska, J., Blom, P., 't Hoen, P. A. C., van Engelen, B., & Glennon, J. C. (2019). Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1. Frontiers in neurology, 10, 1229. https://doi.org/10.3389/fneur.2019.01229

Smith, A. E., McMullen, K., Jensen, M. P., Carter, G. T., & Molton, I. R. (2014). Symptom burden in persons with myotonic and facioscapulohumeral muscular dystrophy. American journal of physical medicine & rehabilitation, 93(5), 387–395. https://doi.org/10.1097/PHM.0000000000000032

Hagerman, K. A., Howe, S. J., Heatwole, C. R., & Christopher Project Reference Group (2019). The myotonic dystrophy experience: a North American cross-sectional study. Muscle & nerve, 59(4), 457–464. https://doi.org/10.1002/mus.26420

Gao, Z., & Cooper, T. A. (2013). Antisense oligonucleotides: rising stars in eliminating RNA toxicity in myotonic dystrophy. Human gene therapy, 24(5), 499–507. https://doi.org/10.1089/hum.2012.212

De Serres-Bérard, T., Ait Benichou, S., Jauvin, D., Boutjdir, M., Puymirat, J., & Chahine, M. (2022). Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. International journal of molecular sciences, 23(21), 13359. https://doi.org/10.3390/ijms232113359

Marsh, S., Hanson, B., Wood, M. J. A., Varela, M. A., & Roberts, T. C. (2020). Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Molecular therapy : the journal of the American Society of Gene Therapy, 28(12), 2527–2539. https://doi.org/10.1016/j.ymthe.2020.10.005

Raaijmakers, R. H. L., Ripken, L., Ausems, C. R. M., & Wansink, D. G. (2019). CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities. International journal of molecular sciences, 20(15), 3689. https://doi.org/10.3390/ijms20153689

Lee, J. E., & Cooper, T. A. (2009). Pathogenic mechanisms of myotonic dystrophy. Biochemical Society transactions, 37(Pt 6), 1281–1286. https://doi.org/10.1042/BST0371281

Downloads

Posted

2023-09-12