Combination of mRNA Vaccines and Immune Checkpoint Inhibitors for Cancer Treatment
DOI:
https://doi.org/10.58445/rars.403Keywords:
mRNA vaccines, Immunotherapy, Immune checkpoint inhibitorsAbstract
Messenger RNA (mRNA) vaccines have emerged as one of the most promising immunotherapies for cancer due to their treatment efficacy, safety profile, and low development costs. Through the mRNA vaccine, cells are instructed to produce proteins associated with specific mutations in tumors, prompting the immune system to identify and attack these mutations. While mRNA vaccines are considered a rising solution in the field of cancer research, monotherapy trials in general have yet to show significant clinical success. Due to tumors’ ability to evade detection by the immune system, including impairing immune cell function and developing resistance to drugs, monotherapies are believed to be insufficient to treat multiple types of cancers. As a result, many scientists have shifted their strategies to prioritize the concept of combination therapy in order to maximize the benefits of clinical trials. The purpose of this paper is to evaluate the potential benefits of combining mRNA vaccines with immune checkpoint inhibitors for cancer treatment. Using data from past clinical trials combining mRNA vaccines with immune checkpoint inhibitors, as well as reviewing trials using immunotherapies alone, we will examine the design and procedures of the trials, as well as the results and data collected. Studies have demonstrated promising results from combining mRNA vaccines with immune checkpoint inhibitors, including improved distant metastasis-free survival (DMFS). These discoveries are vital to opening up a number of new avenues for the treatment of cancers of many types.
References
Amabile, S., Roccuzzo, G., Pala, V., Tonella, L., Rubatto, M., Merli, M., Fava, P., Ribero, S., Fierro, M. T., Queirolo, P., & Quaglino, P. (2021). Clinical Significance of Distant Metastasis-Free Survival (DMFS) in Melanoma: A Narrative Review from Adjuvant Clinical Trials. Journal of Clinical Medicine, 10(23), 5475. https://doi.org/10.3390/jcm10235475
Asimgil, H., Ertetik, U., Çevik, N. C., Ekizce, M., Doğruöz, A., Gökalp, M., Arık-Sever, E., Istvanffy, R., Friess, H., Ceyhan, G. O., & Demir, I. E. (2022). Targeting the undruggable oncogenic KRAS: the dawn of hope. JCI Insight, 7(1). https://doi.org/10.1172/jci.insight.153688
Bai, R., Chen, N., Li, L., Du, N., Bai, L., Lv, Z., Tian, H., & Cui, J. (2020). Mechanisms of cancer resistance to immunotherapy. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.01290
Barraclough, H., Simms, L., & Govindan, R. (2011). Biostatistics Primer: What a clinician ought to know: hazard ratios. Journal of Thoracic Oncology, 6(6), 978–982. https://doi.org/10.1097/jto.0b013e31821b10ab
Beganovic, S. (2010). Clinical significance of the KRAS mutation. Bosnian Journal of Basic Medical Sciences, 9(1), S17–S20. https://doi.org/10.17305/bjbms.2009.2749
Benefits of combination immunotherapy and reducing harms. (n.d.). Melanoma Research Alliance. https://www.curemelanoma.org/blog/article/the-next-frontier-of-combination-immunotherapy-maximizing-the-benefits-and-reducing-harms
Bondhopadhyay, B. (2020). Cancer immunotherapy: a promising dawn in cancer research. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811907/
Bouchard, L. C., Aaronson, N. K., Gondek, K., & Cella, D. (2018). Cancer symptom response as an oncology clinical trial end point. Expert Review of Quality of Life in Cancer Care, 3(2–3), 35–46. https://doi.org/10.1080/23809000.2018.1483193
Cancer Research UK. (2023, February 24). Phases of clinical trials. https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/what-clinical-trials-are/phases-of-clinical-trials#:~:text=Phase%203%20trials%20usually%20involve,hospitals%20and%20even%20different%20countries.
Carlino, M. S., Larkin, J., & Long, G. V. (2021). Immune checkpoint inhibitors in melanoma. The Lancet, 398(10304), 1002–1014. https://doi.org/10.1016/s0140-6736(21)01206-x
Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M. F., Dika, I. H. E., Segal, N. H., Shcherba, M., Sugarman, R., Stadler, Z. K., Yaeger, R., Smith, J. J., Rousseau, B., Argilés, G., Patel, M., Desai, A. M., Saltz, L., Widmar, M., . . . Diaz, L. (2022). PD-1 blockade in mismatch Repair–Deficient, locally advanced rectal cancer. The New England Journal of Medicine, 386(25), 2363–2376. https://doi.org/10.1056/nejmoa2201445
Cheng, F., Wang, Y., Bai, Y., Liang, Z., Mao, Q., Liu, D., Wu, D. D., & Xu, M. (2023). Research advances on the stability of mRNA vaccines. Viruses, 15(3), 668. https://doi.org/10.3390/v15030668
Chiarion-Sileni, V., Del Bianco, P., Romanini, A., Guida, M., Paccagnella, A., Palma, M. D., Naglieri, E., Ridolfi, R., Silvestri, B., Michiara, M., & De Salvo, G. L. (2006). Tolerability of intensified intravenous interferon alfa-2b versus the ECOG 1684 schedule as adjuvant therapy for stage III melanoma: a randomized phase III Italian Melanoma Inter-group trial (IMI – Mel.A.) [ISRCTN75125874]. BMC Cancer, 6(1). https://doi.org/10.1186/1471-2407-6-44
Children’s Hospital Of (C.H.O.) Philadelphia. (n.d.). How mRNA vaccines work. Children’s Hospital of Philadelphia. https://www.chop.edu/video/how-mrna-vaccines-work
David, S. (2022, July 18). Double-Blind study. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK546641/
Di Franco, S., Turdo, A., Todaro, M., & Stassi, G. (2017). Role of type I and II interferons in colorectal cancer and melanoma. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00878
Ghosh, C., Luong, G., & Sun, Y. (2021). A snapshot of the PD-1/PD-L1 pathway. Journal of Cancer, 12(9), 2735–2746. https://doi.org/10.7150/jca.57334
Guo, L., Zhang, H., & Chen, B. (2017). Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. Journal of Cancer, 8(3), 410–416. https://doi.org/10.7150/jca.17144
Halabi, S., Roy, A., Yang, Q., Xie, W., Kelly, W. K., & Sweeney, C. J. (2021). Radiographic progression-free survival as a surrogate endpoint of overall survival in men with metastatic castrate-resistant prostate cancer. Journal of Clinical Oncology, 39(15_suppl), 5057. https://doi.org/10.1200/jco.2021.39.15_suppl.5057
Harvard Medical School. (2022, October 24). T cell Take Down: Researchers discover how cancer cells manipulate the immune system [Video]. YouTube. https://www.youtube.com/watch?v=ge6jyIqeXm8
Herbst, R. S., Giaccone, G., De Marinis, F., Reinmuth, N., Vergnenègre, A., Barrios, C. H., Morise, M., Felip, E., Andric, Z., Geater, S. L., Ozguroglu, M., Zou, W., Sandler, A., Enquist, I., Komatsubara, K. M., Deng, Y., Kuriki, H., Wen, X., McCleland, M. L., . . . Spigel, D. R. (2020). Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. The New England Journal of Medicine, 383(14), 1328–1339. https://doi.org/10.1056/nejmoa1917346
Hosseinzadeh, A., Merikhian, P., Naseri, N., Eisavand, M. R., & Farahmand, L. (2022). MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell International, 22(1). https://doi.org/10.1186/s12935-022-02523-z
Huang, X., Zhang, G., Tang, T., Gao, X., & Liang, T. (2022). Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Military Medical Research, 9(1). https://doi.org/10.1186/s40779-022-00416-w
Interferon for melanoma adjuvant therapy. (n.d.). Melanoma Research Alliance. https://www.curemelanoma.org/patient-eng/melanoma-treatment/adjuvant-therapy/interferon-intron-a-or-sylatron#:~:text=Interferon%20is%20an%20adjuvant%20therapy,destroy%20any%20remaining%20tumor%20cells
Janeway, C. A., Jr. (2001). T cell-mediated cytotoxicity. Immunobiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK27101/#:~:text=Cytotoxic%20T%20cells%20kill%20target,only%20infected%20cells%20are%20killed.
Khattak, A., Weber, J. S., Meniawy, T., Taylor, M. H., Ansstas, G., Kim, K. B., McKean, M., Long, G. V., Sullivan, R. J., Faries, M. B., Tran, T., Cowey, C. L., Medina, T. M., Segar, J. M., Atkinson, V., Gibney, G. T., Luke, J. J., Buchbinder, E. I., Meehan, R. S., & Carlino, M. S. (2023). Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. Journal of Clinical Oncology, 41(17_suppl), LBA9503. https://doi.org/10.1200/jco.2023.41.17_suppl.lba9503
Khoja, L., Butler, M. O., Kang, S. P., Ebbinghaus, S., & Joshua, A. M. (2015). Pembrolizumab. Journal for ImmunoTherapy of Cancer, 3(1). https://doi.org/10.1186/s40425-015-0078-9
Koury, J., Lucero, M., Cato, C., Chang, L., Geiger, J., Henry, D., Hernandez, J., Hung, F., Kaur, P., Teskey, G., & Tran, A. (2018). Immunotherapies: Exploiting the immune system for cancer treatment. Journal of Immunology Research, 2018, 1–16. https://doi.org/10.1155/2018/9585614
Kwapisz, D. (2020). Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunology, Immunotherapy, 70(3), 607–617. https://doi.org/10.1007/s00262-020-02736-z
Lee, J. B., Kim, H. S., & Ha, S. Y. (2022). Immune Checkpoint Inhibitors in 10 years: Contribution of basic research and clinical application in cancer immunotherapy. Immune Network, 22(1). https://doi.org/10.4110/in.2022.22.e2
Lee, S. (n.d.). Immunotherapy. Canadian Cancer Society. https://cancer.ca/en/treatments/treatment-types/immunotherapy#:~:text=Non%2Dspecific%20immunotherapy%20uses%20cytokines,that%20get%20into%20the%20body.
Lee, S. (2021, February 1). Precision medicine. Canadian Cancer Society. https://cancer.ca/en/research/understanding-cancer-research/precision-medicine#:~:text=Personalizing%20treatment%20in%20this%20way,that%20are%20right%20for%20them
Lee, S., & Margolin, K. (2011). Cytokines in cancer immunotherapy. Cancers, 3(4), 3856–3893. https://doi.org/10.3390/cancers3043856
Lorentzen, C. L., Haanen, J. B., Met, Ö., & Svane, I. M. (2022). Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncology, 23(10), e450–e458. https://doi.org/10.1016/s1470-2045(22)00372-2
Lynch, S. S. (2023, July 18). Genetic makeup and response to drugs. MSD Manual Consumer Version. https://www.msdmanuals.com/home/drugs/factors-affecting-response-to-drugs/genetic-makeup-and-response-to-drugs?query=Genetic%20makeup%20and%20response%20to%20drugs
Mheslinga. (2023, April 6). Cancer immunotherapy, explained. University of Chicago News. https://news.uchicago.edu/explainer/what-is-immunotherapy#benefits
Nath, S., & Mukherjee, P. (2014). MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 20(6), 332–342. https://doi.org/10.1016/j.molmed.2014.02.007
Pourhoseingholi, M. A. (2013, January 1). Sample size calculation in medical studies. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017493/#:~:text=Initial%20trials%20might%20require%20a,%2D200%20patients%20(8).
Precision medicine meets cancer vaccines. (2023). Nature Medicine, 29(6), 1287. https://doi.org/10.1038/s41591-023-02432-2
Rausch, S., Schwentner, C., Stenzl, A., & Bedke, J. (2014). mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Human Vaccines & Immunotherapeutics, 10(11), 3146–3152. https://doi.org/10.4161/hv.29553
Sambi, M., Bagheri, L., & Szewczuk, M. R. (2019). Current challenges in cancer immunotherapy: Multimodal approaches to improve efficacy and patient response rates. Journal of Oncology, 2019, 1–12. https://doi.org/10.1155/2019/4508794
Seymour, C. (2023, June 16). Cancer vaccine mRNA-4157 improves Recurrence-Free survival for patients with High-Risk Melanoma. Oncology Nursing News. https://www.oncnursingnews.com/view/cancer-vaccine-mrna-4157-improves-recurrence-free-survival-for-patients-with-high-risk-melanoma
Sockrider, M., & Krishnan, J. A. (2021). How vaccines work to prevent infections. American Journal of Respiratory and Critical Care Medicine, 203(6), P16–P17. https://doi.org/10.1164/rccm.2021c1
Sondak, V. K., & Kudchadkar, R. R. (2012). Pegylated interferon for the adjuvant treatment of melanoma: FDA approved, but what is its role? Oncologist, 17(10), 1223–1224. https://doi.org/10.1634/theoncologist.2012-0368
Stenzl, A., Feyerabend, S., Syndikus, I., Sarosiek, T., Kübler, H., Heidenreich, A., Cathomas, R., Grüllich, C., Loriot, Y., Gracia, S. L., Gillessen, S., Klinkhardt, U., Schröder, A., Schönborn-Kellenberger, O., Reus, V., Koch, S. D., Hong, H. S., Seibel, T., Fizazi, K., & Gnad-Vogt, U. (2017). Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). Annals of Oncology, 28, v408–v409. https://doi.org/10.1093/annonc/mdx376.014
Stirling, E., Bronson, S. M., Mackert, J., Cook, K. L., Triozzi, P. L., & Soto-Pantoja, D. R. (2022). Metabolic implications of immune checkpoint proteins in cancer. Cells, 11(1), 179. https://doi.org/10.3390/cells11010179
Tasleem, R., & Tasleem, R. (2023). Israeli researchers discover breakthrough method to induce cancer cells’ Self-Destruction. BNN Breaking. https://bnn.network/breaking-news/israeli-researchers-discover-breakthrough-method-to-induce-cancer-cells-self-destruction/
T-cell transfer therapy - immunotherapy. (2022, April 1). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy#:~:text=TIL%20therapy%20uses%20T%20cells,grow%20to%20large%20numbers%20quickly.
Thornton, J., Chhabra, G., Singh, C. K., Guzmán-Pérez, G., Shirley, C. A., & Ahmad, N. (2022). Mechanisms of immunotherapy resistance in cutaneous melanoma: Recognizing a shapeshifter. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.880876
Touboul, R., & Bonavida, B. (2021). YY1 expression and PD-1 regulation in CD8 T lymphocytes. In Elsevier eBooks (pp. 289–309). https://doi.org/10.1016/b978-0-12-821909-6.00003-1
Vishweshwaraiah, Y., & Dokholyan, N. V. (2022). mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1029069
What is immunotherapy? (2022, May 26). Cancer.Net. https://www.cancer.net/navigating-cancer-care/how-cancer-treated/immunotherapy-and-vaccines/what-immunotherapy
Why do cancer treatments stop working? (2016, December 21). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/research/drug-combo-resistance
Xu, K., Park, D., Magis, A. T., Zhang, J., Zhou, W., Sica, G. L., Ramalingam, S. S., Curran, W. J., & Deng, X. (2019). Small molecule KRAS agonist for mutant KRAS cancer therapy. Molecular Cancer, 18(1). https://doi.org/10.1186/s12943-019-1012-4
Yan, W.-T., Quan, B., Xing, H., & Wu, M.-C. (2018). Time to recurrence, but not recurrence-free survival, should be the endpoint used to predict early recurrence after HCC resection. Journal of Hepatology, 70(3), P570-571. https://www.journal-of-hepatology.eu/article/S0168-8278(18)32509-1/fulltext
Yi, M., Zheng, X., Niu, M., Zhu, S., Ge, H., & Wu, K. (2022). Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Molecular Cancer, 21(1). https://doi.org/10.1186/s12943-021-01489-2
Zaidi, M. R., & Merlino, G. (2011). The two faces of interferon-Γ in cancer. Clinical Cancer Research, 17(19), 6118–6124. https://doi.org/10.1158/1078-0432.ccr-11-0482
Downloads
Posted
Categories
License
Copyright (c) 2023 Claire Zhu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.