Preprint / Version 1

An Investigation of Vaccine Candidates For the Treatment of Leprosy and Their Efficacy and Accessibility

##article.authors##

  • Hasika Oggi Branham High School

DOI:

https://doi.org/10.58445/rars.375

Abstract

Leprosy is a disease caused by the immune system’s response to the bacteria Mycobacterium leprae. Infection with M. leprae can severely damage peripheral nerves, leading to the loss of smell, sight, limbs, and even paralysis. The majority of individuals impacted by this disease live in poor socioeconomic conditions. While over 120 countries report around 200,000 cases of leprosy per year, 52% of these cases were found in India alone in 2022. While treatments such as multi-drug therapy (MDT) are available to treat leprosy, there is still a chance of relapse. In addition, MDT requires long-term treatments that are not readily accessible to patients with few means. On the other hand, if vaccines were an option for leprosy, they might have a farther reach and prevent infections in high-incidence regions Thus, this paper focuses on evaluating the efficacy and accessibility of the three vaccines currently being developed or that are approved by the FDA to treat leprosy: BCG, MIP, and LepVax. This review will also investigate current limitations that need to be overcome, such as lack of clinical trials and adverse side effects after administration of a vaccine. While vaccines on the market do provide some relief for those with leprosy, further work needs to be done to develop a vaccine that is both effective and accessible to those populations affected. 

References

(1)

CDC. Hansen’s Disease (Leprosy). CDC. https://www.cdc.gov/leprosy/index.html (accessed 2023-08-12).

(2)

Smith, D. S. What Is the mortality/morbidity Rate of leprosy? www.medscape.com. https://www.medscape.com/answers/220455-91305/what-is-the-mortality/2078412-overview (accessed 2023-08-14).

(3)

CDC. Transmission. Centers for Disease Control and Prevention. https://www.cdc.gov/leprosy/transmission/index.html (accessed 2023-08-14).

(4)

World Health Organization. Leprosy. Who.int. https://www.who.int/news-room/fact-sheets/detail/leprosy (accessed 2023-08-13).

(5)

Porecha, M. India Accounts for 52% of World’s New Leprosy Patients, Says Health Minister. The Hindu. February 16, 2023. https://www.thehindu.com/news/national/india-accounts-for-52-of-worlds-new-leprosy-patients-says-health-minister/article66513013.ece (accessed 2023-08-14).

(6)

M Leprae Lifecycle. Davidson.edu. https://www.bio.davidson.edu/people/sosarafova/assets/bio307/algreer/lifecycle.html (accessed 2023-08-13).

(7)

physiopedia. Schwann Cell. Physiopedia. https://www.physio-pedia.com/Schwann_Cell#:~:text=Schwann%20cells%20(SCs)%20are%20a (accessed 2023-08-14).

(8)

Barker, L. P. Mycobacterium Leprae Interactions with the Host Cell: Recent Advances. The Indian Journal of Medical Research 2006, 123 (6), 748–759 (accessed 2023-08-11).

(9)

CDC. Diagnosis and Treatment | Hansen’s Disease (Leprosy) | CDC. www.cdc.gov. https://www.cdc.gov/leprosy/treatment/index.html#:~:text=Hansen (accessed 2023-08-11).

(10)

Perron, G. G.; Kryazhimskiy, S.; Rice, D. P.; Buckling, A. Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters. Applied and Environmental Microbiology 2012, 78 (17), 6137–6142. https://doi.org/10.1128/aem.01078-12 (accessed 2023-08-12).

(11)

Sasakawa Leprosy Initiative. DATA BOX: WHO’s global leprosy update (2020 data) - Sasakawa Leprosy (Hansen’s Disease) Initiative. Sasakawa Leprosy Initiative. https://sasakawaleprosyinitiative.org/latest-updates/initiative-news/1295/ (accessed 2023-08-14).

(12)

Coppola, M.; van den Eeden, S. J. F.; Robbins, N.; Wilson, L.; Franken, K. L. M. C.; Adams, L. B.; Gillis, T. P.; Ottenhoff, T. H. M.; Geluk, A. Vaccines for Leprosy and Tuberculosis: Opportunities for Shared Research, Development, and Application. Frontiers in Immunology 2018, 9 (10.3389). https://doi.org/10.3389/fimmu.2018.00308 (accessed 2023-08-12).

(13)

CDC. Polio Vaccine Effectiveness and Duration of Protection | CDC. www.cdc.gov. https://www.cdc.gov/vaccines/vpd/polio/hcp/effectiveness-duration-protection.html#:~:text=Two%20doses%20of%20inactivated%20polio (accessed 2023-08-14).

(14)

Richardus, R.; van Hooij, A.; van den Eeden, S. J. F.; Wilson, L.; Alam, K.; Richardus, J. H.; Geluk, A. BCG and Adverse Events in the Context of Leprosy. Frontiers in Immunology 2018, 9 (29670618). https://doi.org/10.3389/fimmu.2018.00629 (accessed 2023-08-15).

(15)

The Leprosy Mission. FAQs. The Leprosy Mission. https://www.leprosymission.org.uk/about/faqs/ (accessed 2023-08-12).

(16)

NHS . Why vaccination is safe and important. NHS. https://www.nhs.uk/conditions/vaccinations/why-vaccination-is-safe-and-important/ (accessed 2023-08-12).

(17)

Medline Plus. Rifampin: MedlinePlus Drug Information. Medlineplus.gov. https://medlineplus.gov/druginfo/meds/a682403.html (accessed 2023-08-13).

(18)

BROWNE, S. G. Self-Healing Leprosy: Report on 2749 Patients. Leprosy Review 1974, 45 (2). https://doi.org/10.5935/0305-7518.19740012 (accessed 2023-08-12).

(19)

Ali, L. Leprosy Vaccines – a Voyage Unfinished. Journal of Skin and Sexually Transmitted Diseases 2021, 3 (1), 40–45. https://doi.org/10.25259/jsstd_24_2020 (accessed 2023-08-14).

(20)

Sugawara-Mikami, M.; Tanigawa, K.; Kawashima, A.; Kiriya, M.; Nakamura, Y.; Fujiwara, Y.; Suzuki, K. Pathogenicity and Virulence of Mycobacterium Leprae. Virulence 2022, 13 (1), 1985–2011. https://doi.org/10.1080/21505594.2022.2141987 (accessed 2023-08-12).

(21)

Grove, J.; Marsh, M. The Cell Biology of Receptor-Mediated Virus Entry. The Journal of Cell Biology 2011, 195 (7), 1071–1082. https://doi.org/10.1083/jcb.201108131 (accessed 2023-08-13).

(22)

Chong, L. C.; Khan, A. M. Vaccine Target Discovery. Encyclopedia of Bioinformatics and Computational Biology 2019, No. 7148608, 241–251. https://doi.org/10.1016/b978-0-12-809633-8.20100-3 (accessed 2023-08-15).

(23)

Henriques-Normark, B.; Normark, S. Bacterial Vaccines and Antibiotic Resistance. Upsala Journal of Medical Sciences 2014, 119 (2), 205–208. https://doi.org/10.3109/03009734.2014.903324 (accessed 2023-08-15).

(24)

Hansen-Flaschen, J. BCG vaccine | Immunity, Tuberculosis, Protection | Britannica. www.britannica.com. https://www.britannica.com/science/BCG-vaccine#:~:text=The%20vaccine%20was%20developed%20over (accessed 2023-08-14).

(25)

Johansen, F. A. Similarities in the Manifestations of Leprosy and Tuberculosis. ATS Journals. https://www.atsjournals.org/doi/abs/10.1164/art.1937.35.5.609?role=tab (accessed 2023-08-15).

(26)

Covián, C.; Fernández-Fierro, A.; Retamal-Díaz, A.; Díaz, F. E.; Vasquez, A. E.; Lay, M. K.; Riedel, C. A.; González, P. A.; Bueno, S. M.; Kalergis, A. M. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Frontiers in Immunology 2019, 10 (31849980). https://doi.org/10.3389/fimmu.2019.02806 (accessed 2023-08-14).

(27)

Thomas, L. Leprosy Prevention and Vaccination. News-Medical.net. https://www.news-medical.net/health/Leprosy-Prevention-and-Vaccination.aspx#:~:text=Leprosy%20is%20endemic%20in%20several (accessed 2023-08-12).

(28)

NHS. BCG vaccine for tuberculosis (TB) FAQs. nhs.uk. https://www.nhs.uk/conditions/vaccinations/bcg-tb-vaccine-questions-answers/#:~:text=BCG%20vaccination%20given%20to%20babies (accessed 2023-08-11).

(29)

Finnish Institute for Health and Welfare. Adverse effects of the BCG vaccine - THL. Finnish Institute for Health and Welfare (THL), Finland. https://thl.fi/en/web/infectious-diseases-and-vaccinations/vaccines-a-to-z/bcg-or-tuberculosis-vaccine/adverse-effects-of-the-bcg-vaccine (accessed 2023-08-13).

(30)

FDA. BCG Vaccine Package Insert. FDA. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---BCG-Vaccine.pdf (accessed 2023-08-15).

(31)

Adnan, M. L. LepVax as a Promising Specific Vaccine for Leprosy: A Narrative Review | Cambridge Medicine Journal. cambridgemedicine.org. https://cambridgemedicine.org/doi/cmj.2022.03.002#:~:text=LepVax%20works%20by%20stimulating%20the (accessed 2023-08-14).

(32)

Weiland, S. VIEWPOINT: LepVax: A new tool for prevention and treatment - Sasakawa Leprosy (Hansen’s Disease) Initiative. Sasakawa Leprosy Initiative. https://sasakawaleprosyinitiative.org/latest-updates/initiative-news/2696/ (accessed 2023-08-14).

(33)

Hagge, D. A.; Scollard, D. M.; Ray, N. A.; Marks, V. T.; Deming, A. T.; Spencer, J. S.; Adams, L. B. IL-10 and NOS2 Modulate Antigen-Specific Reactivity and Nerve Infiltration by T Cells in Experimental Leprosy. PLOS Neglected Tropical Diseases 2014, 8 (9), e3149–e3149. https://doi.org/10.1371/journal.pntd.0003149 (accessed 2023-08-12).

(34)

Duthie, M. S.; Pena, M. T.; Ebenezer, G. J.; Gillis, T. P.; Sharma, R.; Cunningham, K.; Polydefkis, M.; Maeda, Y.; Makino, M.; Truman, R. W.; Reed, S. G. LepVax, a Defined Subunit Vaccine That Provides Effective Pre-Exposure and Post-Exposure Prophylaxis of M. Leprae Infection. npj Vaccines 2018, 3 (1). https://doi.org/10.1038/s41541-018-0050-z (accessed 2023-08-12).

(35)

Panwalkar, A. K., Pooja. After 36 years of testing, Indian-made leprosy vaccine finally set for large roll-out. ThePrint (accessed 2023-08-14). https://theprint.in/health/after-36-years-of-testing-indian-made-leprosy-vaccine-finally-set-for-large-roll-out/268394/#:~:text=The%20vaccine%20was%20developed%20by (accessed 2023-08-14).

(36)

Katoch, K.; Muniyandi, M.; Singh, M.; Singh, M.; Rajshekhar, K. Cost-Effectiveness of Incorporating Mycobacterium Indicus Pranii Vaccine to Multidrug Therapy in Newly Diagnosed Leprosy Cases for Better Treatment Outcomes & Immunoprophylaxis in Contacts as Leprosy Control Measures for National Leprosy Eradication Programme in India. Indian Journal of Medical Research 2021, 154 (1), 121. https://doi.org/10.4103/ijmr.ijmr_661_20 (accessed 2023-08-12).

(37)

Sharma, P.; Misra, R. S.; Kar, H. K.; Mukherjee, A.; Poricha, D.; Kaur, H.; Mukherjee, R.; Rani, R. Mycobacterium W Vaccine, a Useful Adjuvant to Multidrug Therapy in Multibacillary Leprosy: A Report on Hospital Based Immunotherapeutic Clinical Trials with a Follow-up of 1-7 Years after Treatment. Leprosy Review 2000, 71 (2), 179–192. https://doi.org/10.5935/0305-7518.20000020 (accessed 2023-08-12).

(38)

Talwar, G. P.; Zaheer, S. A.; Mukherjee, R.; Walia, R.; Misra, R. D. K.; Sharma, A.; Hemanta Kumar Kar; Mukherjee, A.; S.C. Parida; Suresh, N. R.; Nair, S. K.; Ravindra Mohan Pandey. Immunotherapeutic Effects of a Vaccine Based on a Saprophytic Cultivable Mycobacterium, Mycobacterium W in Multibacillary Leprosy Patients. PubMed 1990, 8 (2), 121–129. https://doi.org/10.1016/0264-410x(90)90134-8 (accessed 2023-08-11).

(39)

Wang, H. Leprosy Vaccines: Developments for Prevention and Treatment. Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges 2023, 47–69. https://doi.org/10.1007/978-3-031-24355-4_4 (accessed 2023-08-11).

(40)

American Leprosy Missions. Leprosy Vaccine Project Overview Leprosy Vaccine Phase 1b/2a Clinical Trial Update; 2022. https://leprosy.org/wp-content/uploads/2022/06/June2022-ALM_LeprosyVaccineReport_Final.pdf (accessed 2023-08-15).

(41)

Soleimanpour, S. Mycobacterium Indicus Pranii - an overview | ScienceDirect Topics. www.sciencedirect.com. https://www.sciencedirect.com/topics/medicine-and-dentistry/mycobacterium-indicus-pranii (accessed 2023-08-14).

(42)

Juno, J. A.; Wheatley, A. K. Boosting Immunity to COVID-19 Vaccines. Nature Medicine 2021, 27 (11), 1874–1875. https://doi.org/10.1038/s41591-021-01560-x (accessed 2023-08-12).

Downloads

Posted

2023-08-25

Categories