Predicting the Significance of Genetic Variants in Parkinson's Disease
DOI:
https://doi.org/10.58445/rars.354Keywords:
biology, Genetic Variation, Parkinson's DiseaseAbstract
Objectives:
Different genetic variants in the human genome can give rise to distinct forms of Parkinson’s Disease. This study aims to determine the significance of all variants in the human genome linked to Parkinson’s Disease based on empirically validated pathogenicity data.
Methods:
We condensed the list of variants in the dbNSFP/ClinVar database to only those variants associated with Parkinson’s Disease, used 2 interpretation criteria from the American College of Medical Genetics and Genomics/Association for Molecular Pathology’s clinical guidelines to pair each empirically validated variant, with a variant with unknown significance, and finally analyzed for pathogenicity.
Results:
The analysis of variant pairs based on ACMG/AMP criteria revealed strong correlation (R-squared = 0.9943) between CADD scores for PS1 variants. However, for PM5 variants, the lower correlation (R-squared = 0.118) indicates poor predictive value. This indicates that the PS1 criteria is effective in predicting the significance of VUSs based on empirically validated data. Furthermore, we analyzed the COMT gene to predict how treatment of Parkinson’s Disease can be affected.
Conclusion:
The results indicate that, for >1000 SNVs exome wide, we can accurately predict the significance of VUSs based off empirically validated data. On this basis, patients with currently unvalidated mutations can gain information about their likelihood of developing Parkinson’s Disease. Further research is required to understand the clinical presentation of each variant.
References
Becker, G., Müller, A., Braune, S., Büttner, T., Benecke, R., Greulich, W., Klein, W., Mark, G., Rieke, J., & Thümler, R. (2002). Early diagnosis of Parkinson’s disease. Journal of Neurology, 249(3), iii40–iii48. https://doi.org/10.1007/s00415-002-1309-9
Bergeron, C., & Cantin, A. M. (2019). Cystic Fibrosis: Pathophysiology of Lung Disease. Seminars in Respiratory and Critical Care Medicine, 40(6), 715–726. https://doi.org/10.1055/s-0039-1694021
Bhat, V., Adzhubei, I. A., Fife, J. D., Lebo, M., & Cassa, C. A. (2023). Informing variant assessment using structured evidence from prior classifications (PS1, PM5, and PVS1 sequence variant interpretation criteria). Genetics in Medicine, 25(1), 16–26. https://doi.org/10.1016/j.gim.2022.09.009
Bonifati, V. (2005). Genetics of Parkinson’s disease. Minerva Medica, 96(3), 175–186.
Cook, L., Schulze, J., Kopil, C., Hastings, T., Naito, A., Wojcieszek, J., Payne, K., Alcalay, R. N., Klein, C., Saunders-Pullman, R., Simuni, T., & Foroud, T. (2021). Genetic Testing for Parkinson Disease: Are We Ready? Neurology: Clinical Practice, 11(1), 69–77. https://doi.org/10.1212/CPJ.0000000000000831
Cook, L., Schulze, J., Naito, A., & Alcalay, R. N. (2021). The Role of Genetic Testing for Parkinson’s Disease. Current Neurology and Neuroscience Reports, 21(4), 17. https://doi.org/10.1007/s11910-021-01100-7
Corvol, J.-C., & Poewe, W. (2017). Pharmacogenetics of Parkinson’s Disease in Clinical Practice. Movement Disorders Clinical Practice, 4(2), 173–180. https://doi.org/10.1002/mdc3.12444
Grosse, S. D., & Khoury, M. J. (2006). What is the clinical utility of genetic testing? Genetics in Medicine, 8(7), Article 7. https://doi.org/10.1097/01.gim.0000227935.26763.c6
Hamburg, M. A., & Collins, F. S. (2010). The Path to Personalized Medicine. New England Journal of Medicine, 363(4), 301–304. https://doi.org/10.1056/NEJMp1006304
Hornykiewicz, O. (2010). A brief history of levodopa. Journal of Neurology, 257(2), 249–252. https://doi.org/10.1007/s00415-010-5741-y
Ioannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K., Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., Cannon-Albright, L. A., Teerlink, C. C., Stanford, J. L., Isaacs, W. B., Xu, J., Cooney, K. A., Lange, E. M., Schleutker, J., Carpten, J. D., … Sieh, W. (2016). REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. The American Journal of Human Genetics, 99(4), 877–885. https://doi.org/10.1016/j.ajhg.2016.08.016
Kalinderi, K., Fidani, L., Katsarou, Z., & Bostantjopoulou, S. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. International Journal of Clinical Practice, 65(12), 1289–1294. https://doi.org/10.1111/j.1742-1241.2011.02793.x
Meyer, U. A. (2000). Pharmacogenetics and adverse drug reactions. The Lancet, 356(9242), 1667–1671. https://doi.org/10.1016/S0140-6736(00)03167-6
Pan, B., Kusko, R., Xiao, W., Zheng, Y., Liu, Z., Xiao, C., Sakkiah, S., Guo, W., Gong, P., Zhang, C., Ge, W., Shi, L., Tong, W., & Hong, H. (2019). Similarities and differences between variants called with human reference genome HG19 or HG38. BMC Bioinformatics, 20(2), 101. https://doi.org/10.1186/s12859-019-2620-0
Phillips, K.-A. (n.d.). Immunophenotypic and Pathologic Differences Between.
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research, 47(D1), D886–D894. https://doi.org/10.1093/nar/gky1016
Sellbach, A. N., Boyle, R. S., Silburn, P. A., & Mellick, G. D. (2006). Parkinson’s disease and family history. Parkinsonism & Related Disorders, 12(7), 399–409. https://doi.org/10.1016/j.parkreldis.2006.03.002
Siderowf, A., & Stern, M. B. (2008). Premotor Parkinson’s disease: Clinical features, detection, and prospects for treatment. Annals of Neurology, 64(S2), S139–S147. https://doi.org/10.1002/ana.21462
Tabarrok, A. (1994). Genetic testing: An economic and contractarian analysis. Journal of Health Economics, 13(1), 75–91. https://doi.org/10.1016/0167-6296(94)90005-1
van der Velde, K. J., Kuiper, J., Thompson, B. A., Plazzer, J., van Valkenhoef, G., de Haan, M., Jongbloed, J. D. H., Wijmenga, C., de Koning, T. J., Abbott, K. M., Sinke, R., Spurdle, A. B., Macrae, F., Genuardi, M., Sijmons, R. H., & Swertz, M. A. (2015). Evaluation of CADD Scores in Curated Mismatch Repair Gene Variants Yields a Model for Clinical Validation and Prioritization. Human Mutation, 36(7), 712–719. https://doi.org/10.1002/humu.22798
Downloads
Posted
Categories
License
Copyright (c) 2023 Priank Dasgupta, Abrar Choudhury
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.