Preprint / Version 1

Exploring the Potential of Momelotinib to Treat Diffuse Midline Glioma with ACVR1 Mutations

##article.authors##

  • Mahi Valiveti Providence High School

DOI:

https://doi.org/10.58445/rars.3516

Keywords:

Diffuse Midline Glioma, Pediatric Brain Tumor, Cancer, Momelotinib, Drug Repurposing, ACVR1, JAK

Abstract

Diffuse Midline Glioma, or DMG, is an incurable high-grade pediatric brain tumor with a prognosis of less than one year. While the most defining mutation is H3K27M, mutations within the ACVR1, JAK1, and JAK2 genes are also associated with DMG. After years of extensive research, Jazz Pharmaceutical’s recent development of the ONC201 drug for those with a histone mutation marks a significant breakthrough by improving survival by approximately 10 months compared to the initial prognosis. However, there is still much room for improvement in advancing DMG treatment. Past research has noted overactivation of the BMP and JAK/STAT pathways as a common characteristic of DMG. As a result, inhibition of these pathways should be explored as a potential treatment method. Momelotinib, an ACVR1/JAK1/JAK2 inhibitor FDA-approved for the treatment of myelofibrosis, is a viable candidate. While previous research has examined other pathways to treat DMG, the use of momelotinib has not been previously examined in this context. PyRx, PyMol, and Biova Discovery Studio Visualizer were used to test the binding of momelotinib to relevant protein structures obtained from Protein Data Bank. Momelotinib was able to bind to both WT ACVR1, WT JAK1, and mutant ACVR1 with high binding affinities. This indicates momelotinib’s potential to bind to these proteins. However, further laboratory and clinical testing is necessary to truly confirm momelotinib’s potential to be used in treatment of DMG. While previous papers have confirmed momelotinib’s ability to bind to WT ACVR1, binding to mutant ACVR1 has not been previously explored.

References

Al Sharie, S., Abu Laban, D., & Al-Hussaini, M. (2023). Decoding Diffuse Midline Gliomas: A Comprehensive Review of Pathogenesis, Diagnosis and Treatment. Cancers, 15(19), 4869. https://doi.org/10.3390/cancers15194869

Arrillaga-Romany, I., Lassman, A., McGovern, S. L., Mueller, S., Nabors, B., van den Bent, M., Vogelbaum, M. A., Allen, J. E., Melemed, A. S., Tarapore, R. S., Wen, P. Y., & Cloughesy, T. (2024). ACTION: A randomized phase 3 study of ONC201 (dordaviprone) in patients with newly diagnosed H3 K27M-mutant diffuse glioma. Neuro-Oncology, 26(Suppl 2), S173–S181. https://doi.org/10.1093/neuonc/noae031

Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 3(8), 673–683. https://doi.org/10.1038/nrd1468

Asshoff, M., Petzer, V., Warr, M. R., Haschka, D., Tymoszuk, P., Demetz, E., Seifert, M., Posch, W., Nairz, M., Maciejewski, P., Fowles, P., Burns, C. J., Smith, G., Wagner, K.-U., Weiss, G., Whitney, J. A., & Theurl, I. (2017). Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood, 129(13), 1823–1830. https://doi.org/10.1182/blood-2016-09-740092

Bock, O., Höftmann, J., Theophile, K., Hussein, K., Wiese, B., Schlué, J., & Kreipe, H. (2008). Bone Morphogenetic Proteins Are Overexpressed in the Bone Marrow of Primary Myelofibrosis and Are Apparently Induced by Fibrogenic Cytokines. The American Journal of Pathology, 172(4), 951–960. https://doi.org/10.2353/ajpath.2008.071030

Bruzzese, A., Martino, E. A., Labanca, C., Mendicino, F., Lucia, E., Olivito, V., Zimbo, A., Fragliasso, V., Neri, A., Morabito, F., Vigna, E., & Gentile, M. (2024). Momelotinib in myelofibrosis. Expert Opinion on Pharmacotherapy, 25(5), 521–528. https://doi.org/10.1080/14656566.2024.2343780

Center for Drug Evaluation and Research. “Application Number: 216873Orig1s000.” https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/216873Orig1s000IntegratedR.pdf

Ganti, A. K., Klein, A. B., Cotarla, I., Seal, B., & Chou, E. (2021). Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non–Small Cell Lung Cancer in the US. JAMA Oncology, 7(12), 1824–1832. https://doi.org/10.1001/jamaoncol.2021.4932

Hayden, E., Holliday, H., Lehmann, R., Khan, A., Tsoli, M., Rayner, B. S., & Ziegler, D. S. (2021). Therapeutic Targets in Diffuse Midline Gliomas—An Emerging Landscape. Cancers, 13(24), 6251. https://doi.org/10.3390/cancers13246251

Ho, Y. L., Gorycki, P., Ferron‐Brady, G., Martin, P., & Vlasakakis, G. (2024). Clinical assessment of Momelotinib drug–drug interactions via CYP3A metabolism and transporters. Clinical and Translational Science, 17(4), e13799. https://doi.org/10.1111/cts.13799

Induni, S., Soderholm, H., & Pointer, K. B. (2024). Prognostic Factors in H3K7M-Mutant Diffuse Midline Gliomas. International Journal of Radiation Oncology*Biology*Physics, 120(2, Supplement), e691. https://doi.org/10.1016/j.ijrobp.2024.07.1518

Krishnamurthy, N., Grimshaw, A. A., Axson, S. A., Choe, S. H., & Miller, J. E. (2022). Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Services Research, 22, 970. https://doi.org/10.1186/s12913-022-08272-z

Liu, S., Liu, X., Xiao, Y., Chen, S., & Zhuang, W. (2019). Prognostic factors associated with survival in patients with anaplastic oligodendroglioma. PLOS ONE, 14(1), e0211513. https://doi.org/10.1371/journal.pone.0211513

Noon, A., & Galban, S. (2023). Therapeutic avenues for targeting treatment challenges of diffuse midline gliomas. Neoplasia, 40, 100899. https://doi.org/10.1016/j.neo.2023.100899

Panditharatna, E., Kilburn, L. B., Aboian, M. S., Kambhampati, M., Gordish-Dressman, H., Magge, S. N., Gupta, N., Myseros, J. S., Hwang, E. I., Kline, C., Crawford, J. R., Warren, K. E., Cha, S., Liang, W. S., Berens, M. E., Packer, R. J., Resnick, A. C., Prados, M., Mueller, S., & Nazarian, J. (2018). Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient derived liquid biopsy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 24(23), 5850–5859. https://doi.org/10.1158/1078-0432.CCR-18-1345

Park, J., & Chung, C. (2023). Epigenetic and Metabolic Changes in Diffuse Intrinsic Pontine Glioma. Brain Tumor Research and Treatment, 11(2), 86–93. https://doi.org/10.14791/btrt.2023.0011

Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117(8), 1281–1283. https://doi.org/10.1242/jcs.00963

Shakil, M. S., Rana, Z., Hanif, M., & Rosengren, R. J. (2022). Key considerations when using the sulforhodamine B assay for screening novel anticancer agents. Anti-Cancer Drugs, 33(1), 6–10. https://doi.org/10.1097/CAD.0000000000001131

Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y., Morozova, O., Philippe, C., Castel, D., Grasso, C. S., Vinci, M., Carvalho, D., Carcaboso, A. M., de Torres, C., Cruz, O., Mora, J., Entz-Werle, N., Ingram, W. J., Monje, M., Hargrave, D., Bullock, A. N., … Grill, J. (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 46(5), 457–461. https://doi.org/10.1038/ng.2925

Taylor, K. R., Vinci, M., Bullock, A. N., & Jones, C. (2014). ACVR1 Mutations in DIPG: Lessons Learned from FOP. Cancer Research, 74(17), 4565–4570. https://doi.org/10.1158/0008-5472.CAN-14-1298

Tu, Y., Zhong, Y., Fu, J., Cao, Y., Fu, G., Tian, X., & Wang, B. (2011). Activation of JAK/STAT signal pathway predicts poor prognosis of patients with gliomas. Medical Oncology, 28(1), 15–23. https://doi.org/10.1007/s12032-010-9435-1

Vrijens, K., Lin, W., Cui, J., Farmer, D., Low, J., Pronier, E., Zeng, F.-Y., Shelat, A. A., Guy, K., Taylor, M. R., Chen, T., & Roussel, M. F. (2013). Identification of Small Molecule Activators of BMP Signaling. PLoS ONE, 8(3), e59045. https://doi.org/10.1371/journal.pone.0059045

Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87–105. https://doi.org/10.1016/j.gendis.2014.07.005

Wrana, J. L. (2013). Signaling by the TGF-β Superfamily. Cold Spring Harbor Perspectives in Biology, 5(10), a011197. https://doi.org/10.1101/cshperspect.a011197

Zhang, L., Nesvick, C. L., Day, C. A., Choi, J., Lu, V. M., Peterson, T., Power, E. A., Anderson, J. B., Hamdan, F. H., Decker, P. A., Simons, R., Welby, J. P., Siada, R., Ge, J., Kaptzan, T., Johnsen, S. A., Hinchcliffe, E. H., & Daniels, D. J. (2022). STAT3 is a biologically relevant therapeutic target in H3K27M-mutant diffuse midline glioma. Neuro-Oncology, 24(10), 1700–1711. https://doi.org/10.1093/neuonc/noac093

Posted

2025-12-14