Advancements in Human Brain Organoid Models: Integrating Multi-Omics and Genetic Engineering to Unravel Neurodevelopmental Disorders
DOI:
https://doi.org/10.58445/rars.3382Keywords:
Brain Organoids, Neurodevelopmental Disorders, Single-Cell Transcriptomics, Multi-Omics Integration, CRISPR-Cas9 Genome Editing, Autism Spectrum Disorder (ASD), Microcephaly, Parkinson’s Disease, Organoid Engineering, Functional MaturationAbstract
Human brain organoids have emerged as transformative tools for modeling early neural development and investigating the molecular basis of neurodevelopmental disorders. Recent advances in stem cell engineering, spatial patterning, and three-dimensional culture have enabled the generation of increasingly complex models that recapitulate features of the embryonic human brain, including region-specific organization, neuronal diversity, and early circuit formation. Simultaneously, the integration of single-cell transcriptomics and multi-omics technologies has enhanced the resolution with which these models can be analyzed, allowing for precise mapping of developmental trajectories and disease-associated perturbations. In parallel, CRISPR-based genome editing has facilitated targeted manipulation of neurodevelopmental genes, enabling mechanistic insights into rare and common disorders such as autism spectrum disorder and microcephaly. This review synthesizes recent progress in the engineering, validation, and application of brain organoid systems, highlighting key studies that combine morphogenetic fidelity with high-throughput genomic and functional analysis. We also discuss current limitations—including variability, incomplete maturation, and ethical considerations—and propose strategies for improving the reproducibility and translational relevance of brain organoids in disease modeling.
References
Lancaster, M. A., Chiaradia, I., Kanton, S., & Knoblich, J. A. (2023). Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell, 30(5), 783–799.e7. https://doi.org/10.1016/j.stem.2023.02.011
Meng, Y., Li, X., Park, J., Gong, S., Qian, X., Sava, D. S., … & Pașca, S. P. (2023). Assembloid CRISPR screens reveal impact of disease genes in human neurodevelopment. Nature, 619(7970), 1153–1161. https://doi.org/10.1038/s41586-023-06564-w
Tidball, A. M., Niu, W., Ma, Q., Takla, T. N., Walker, J. C., Margolis, J. L., et al. (2023). Deriving early single-rosette brain organoids from human pluripotent stem cells. Stem Cell Reports, 18(12), 2498–2514. https://doi.org/10.1016/j.stemcr.2023.10.020
Cho, A. N., Jin, Y., An, Y., Kim, J., Choi, Y. S., Lee, J. S., et al. (2021). Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nature Communications, 12, 4730. https://doi.org/10.1038/s41467-021-24775-5
Rozman, J., Krajnc, M., & Ziherl, P. (2020). Collective cell mechanics of epithelial shells with organoid-like morphologies. Nature Communications, 11(1), 3805. https://doi.org/10.1038/s41467-020-17535-4
Xiang, Y., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., … & Park, I. H. (2017). Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell
Stem Cell, 21(3), 383–398.e7. https://doi.org/10.1016/j.stem.2017.07.007
Fitzgerald, R. S., Ghosh, R., Schwartzer, J. J., & Muotri, A. R. (2024). Generation of ‘semi-guided’ cortical organoids with complex neural oscillations. Nature Protocols. https://doi.org/10.1038/s41596-024-00856-1
Trujillo, C. A., Gao, R., Negraes, P. D., Chaim, I. A., Domissy, A., Vandenberghe, M., … & Muotri, A. R. (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 25(4), 558–569.e7. https://doi.org/10.1016/j.stem.2019.08.002
Cakir, B., Xiang, Y., Tanaka, Y., Kural, M. H., Parent, M., Kang, Y. J., … & Park, I. H. (2019). Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 16(11), 1169–1175. https://doi.org/10.1038/s41592-019-0586-5
Chen, Y., Liang, R., Li, Y., Jiang, L., Ma, D., Luo, Q., & Song, G. (2024). Chromatin accessibility: Biological functions, molecular mechanisms and therapeutic application. Signal Transduction and Targeted Therapy, 9(1), 340. https://doi.org/10.1038/s41392-024-02030-9
Velmeshev, D., Zheng, Y., Gordon, A., Meng, Y., Pașca, S. P., & Geschwind, D. H. (2024). Developmental convergence and divergence in human stem cell models of autism spectrum disorder. bioRxiv. https://doi.org/10.1101/2024.04.01.587492
Adams, L., Song, M. K., Yuen, S., Tanaka, Y., Kim, Y.-S., et al. (2024). A single-nuclei paired multiomic analysis of the human midbrain reveals age- and Parkinson’s disease–associated glial changes. Nature Aging, 4(3), 364–378. https://doi.org/10.1038/s43587-024-00583-6
Bhaduri, A., Di Lullo, E., Jung, D., Müller, S., Couch, C. H., Chopp, D. A., … & Kriegstein, A. R. (2021). Cell stress in cortical organoids impairs molecular subtype specification. Nature, 598(7880), 100–106. https://doi.org/10.1038/s41586-021-03474-6
Velasco, S., Knoblich, J. A., Arlotta, P., & Trevino, A. E. (2024). Brain chimeroids reveal individual susceptibility to neurotoxic triggers. Nature, 625(7992), 963–973. https://doi.org/10.1038/s41586-024-07194-5
Wang, P., Lin, M., Pedrosa, E., Hrabovsky, A., Zhang, Z., Guo, W., … & Lachman, H. M. (2017). CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neural progenitor cells. Molecular Autism, 8(1), 11. https://doi.org/10.1186/s13229-017-0124-1
Pagani, M., Bertero, A., Liska, A., Galbusera, A., Sabbioni, M., Barsotti, N., Colenbier, N., Marinazzo, D., Scattoni, M. L., & Pasqualetti, M. (2019). Deletion of autism risk gene Shank3 disrupts prefrontal connectivity. The Journal of Neuroscience, 39(27), 5299–5310. https://doi.org/10.1523/JNEUROSCI.0906-19.2019
Dhaliwal, N., Choi, W. W. Y., Muffat, J., & Li, Y. (2021). Modeling PTEN overexpression-induced microcephaly in human brain organoids. Molecular Brain, 14(1), 131. https://doi.org/10.1186/s13041-021-00841-3
Rajarajan, P., Uppal, K., Shen, Q., Fath, T., & Hodes, A. (2020). CRISPR-based functional evaluation of schizophrenia risk variants. Schizophrenia Research, 217, 26–36. https://doi.org/10.1016/j.schres.2020.03.038
Pacalin, N. M., Steinhart, Z., Shi, Q., Belk, J. A., Dorovskyi, D., Kraft, K., Parker, K. R., Shy, B. R., Marson, A., & Chang, H. Y. (2025). Bidirectional epigenetic editing reveals hierarchies in gene regulation. Nature Biotechnology, 43(3), 355–368. https://doi.org/10.1038/s41587-024-02213-3
Wu, W., Yao, H., Negraes, P. D., Wang, J., Trujillo, C. A., de Souza, J. S., Muotri, A. R., & Haddad, G. G. (2022). Neuronal hyperexcitability and ion channel dysfunction in CDKL5-deficiency patient iPSC-derived cortical organoids. Neurobiology of Disease, 174, 105882. https://doi.org/10.1016/j.nbd.2022.105882
Ajongbolo, A. O., & Langhans, S. A. (2025). Brain organoids and assembloids—From disease modeling to drug discovery. Cells, 14(11), 842. https://doi.org/10.3390/cells14110842
Li, C., Fleck, J. S., Martins‑Costa, C., Burkard, T. R., Themann, J., Stuempflen, M., … Knoblich, J. A. (2023).
Single‑cell brain organoid screening identifies developmental defects in autism. Nature, 621(7978), 373–380. https://doi.org/10.1038/s41586-023-06473-y
Kostic, M., Raymond, J. J., Freyre, C. A. C., Henry, B., Tumkaya, T., Khlghatyan, J., … Ihry, R. J. (2023). Patient brain organoids identify a link between the 16p11.2 copy number variant and the RBFOX1 gene. ACS Chemical Neuroscience, 14(22), 3993–4012. https://doi.org/10.1021/acschemneuro.3c00442
Karaer, K., Karaer, D., Yüksel, Z., & Işikay, S. (2022). Neurodevelopmental disorder with microcephaly, ataxia, and seizures syndrome: Expansion of the clinical spectrum. Clinical Dysmorphology, 31(4), 167–173. https://doi.org/10.1097/MCD.0000000000000426
Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., … Ming, G. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165(5), 1238–1254. https://doi.org/10.1016/j.cell.2016.04.032
Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., … Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379. https://doi.org/10.1038/nature12517
Rozman, J., Urbančič, V., & Ude, S. (2019). Collective cell mechanics of small-organoid morphologies. arXiv preprint. https://arxiv.org/abs/1911.12276
Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D., & Livesey, F. J. (2016). 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell, 18(4), 467–480. https://doi.org/10.1016/j.stem.2016.03.003
Kouli, A., Torsney, K. M., & Kuan, W.-L. (2018). Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects (Chapter 1). National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK536722/
Bryois, J., Skene, N. G., Hansen, T. F., Kogelman, L. J. A., Watson, H. J., Liu, Z., … Sullivan, P. F. (2022). Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nature Genetics, 54(5), 517–528. https://doi.org/10.1038/s41588-022-01044-9
Cui, X., Li, X., Zheng, H., Su, Y., Zhang, S., Li, M., Hao, X., Zhang, S., Hu, Z., Xia, Z., Shi, C., Xu, Y., & Mao, C. (2024). Human midbrain organoids: a powerful tool for advanced Parkinson’s disease modeling and therapy exploration. npj Parkinson’s Disease, 10(1), 1–14. https://doi.org/10.1038/s41531-024-00799-8
Farahany, N. A., Greely, H. T., Hyman, S. E., Koch, C., Grady, C., Pașca, S. P., Sestan, N., Arlotta, P., Bernat, J. L.,
Ting, J., Lunshof, J. E., Iyer, E. P. R., Hyun, I., Capestany, B. H., Church, G. M., Huang, H., & Song, H. (2018). The ethics of experimenting with human brain tissue. Nature, 556(7702), 429–432. https://doi.org/10.1038/d41586‑018‑04813‑x
Downloads
Posted
Categories
License
Copyright (c) 2025 Jihoo Hyun

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.