The Impact of AI in Breast Cancer
DOI:
https://doi.org/10.58445/rars.3306Keywords:
Artificial Intelligence (AI), Breast Cancer, Cancer DiagnosisAbstract
Breast cancer remains one of the leading causes of mortality among women worldwide, demanding continuous innovation in prevention, diagnosis, and treatment. This review explores the transformative role of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), in addressing these challenges. AI-driven models have demonstrated remarkable potential in enhancing early detection accuracy through mammogram interpretation, reducing false negatives and positives, and supporting radiologists in diagnosis. Preventative applications, such as carcinogen identification systems (e.g., Metabokiller, ProTox-II) and genetic risk prediction models for BRCA mutations, illustrate AI’s ability to identify high-risk individuals and environments before disease onset. In treatment, AI contributes to precision medicine by predicting patient responses to chemotherapy, immunotherapy, and targeted drug therapies, enabling the development of personalized treatment plans. Emerging DL frameworks also aid in image reconstruction, biomarker identification, and noninvasive prognostics, promoting cost-effective and patient-centered care. Despite these advancements, ethical challenges—such as data bias, limited dataset diversity, and patient privacy—remain barriers to clinical integration. The study concludes that with improved data transparency and regulatory oversight, AI could revolutionize breast cancer management through enhanced accuracy, accessibility, and individualized medical care.
References
Akpan, A., Tabue-Teguo, M., & Fougère, B. (2019, January 1). Neurocognitive disorders:
Importance of early/timely detection in daily clinical practice. Journal of Alzheimer’s
Disease. https://content.iospress.com/articles/journal-of-alzheimers-disease/jad180381
Alarcón-Zendejas, A. P., Scavuzzo, A., Jiménez-Ríos, M. A., Álvarez-Gómez, R. M.,
Montiel-Manríquez, R., Castro-Hernández, C., Jiménez-Dávila, M. A., Pérez-Montiel, D.,
González-Barrios, R., Jiménez-Trejo, F., Arriaga-Canon, C., & Herrera, L. A. (2022, April
. The promising role of new molecular biomarkers in prostate cancer: From coding and
non-coding genes to artificial intelligence approaches. Nature News.
https://www.nature.com/articles/s41391-022-00537-2
Balmana , J., Diez, O., & Cardoso, F. (2011, September). BRCA in breast cancer: ESMO
clinical practice guidelines.
https://www.annalsofoncology.org/article/S0923-7534(19)38796-4/fulltext#:~:text=The
estimated population frequency of,ethnic groups and geographical areas.
Cancer Research infrastructure . (2024, May). Ai and cancer. AI and Cancer - NCI.
https://www.cancer.gov/research/infrastructure/artificial-intelligence
Central for Disease Control and Prevention, C. (2024, June 13). U.S. Cancer Statistics
Breast Cancer Stat Bite. Centers for Disease Control and Prevention.
https://www.cdc.gov/united-states-cancer-statistics/publications/breast-cancer-stat-bite.htm
l#:~:text=Based%20on%20the%20most%20recent,females%20died%20from%20breast%
cancer
Chang, T., Cao, Y., Sfreddo, H., Dhruba, S., Lee, S., Valero, C., Yoo, S. K., Chowell, D.,
Morris, L. G., & Ruppin, E. (2024, July 9). AI tool predict response to cancer therapy.
National Institutes of Health.
https://www.nih.gov/news-events/nih-research-matters/ai-tool-predicts-response-cancer-th
erapy#:~:text=Scientists%20developed%20an%20AI%20tool,personalized%20cancer%20
treatments%20for%20patients.
Chang, T.-G., Cao, Y., Sfreddo, H. J., Dhruba, S. R., Lee, S.-H., Valero, C., Yoo, S.-K.,
Chowell, D., Morris, L. G. T., & Ruppin, E. (2024, June 3). Loris robustly predicts patient
outcomes with immune checkpoint blockade therapy using common clinical, pathologic
and genomic features. Nature News. https://www.nature.com/articles/s43018-024-00772-7
Chen, Z.-H., Lin, L., Wu, C.-F., Li, C.-F., Xu, R.-H., & Sun, Y. (2021, October). Artificial
Intelligence for assisting cancer diagnosis and treatment in the era of Precision Medicine.
Cancer communications (London, England). https://pubmed.ncbi.nlm.nih.gov/34613667/
Cogliano , V. J., Baan, R. A., Straif, K., Grosse, Y., Secretan, M. B., Ghissassi, F. E., &
Kleihues, P. (2004, June 3). The Science and Practice of Carcinogen Identification and
Evaluation. EHP publishing . https://ehp.niehs.nih.gov/doi/10.1289/ehp.6950
Correa, H. (2016, April 13). Li–Fraumeni syndrome. Journal of Pediatric Genetics.
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0036-1579759
Dembrower, K., Crippa, A., Colon, E., & Ekland, M. (2023). Artificial Intelligence for Breast
Cancer Detection in ... the Lancet digital health .
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(23)00153-X/fulltext
Deo, R. C. (2015, November 17). Machine learning in medicine | circulation. AHA Journal .
https://www.ahajournals.org/doi/full/10.1161/circulationaha.115.001593
Euhus, D. M. (2015, March 28). Risk-reducing mastectomy for BRCA gene mutation
carriers - annals of surgical oncology. SpringerLink.
https://link.springer.com/article/10.1245/s10434-015-4537-9
Freeman, K., Geppert, J., Stinton, C., Todkill, D., Johnson, S., Clarke, A., & Taylor-Phillips,
S. (2021, September 2). Use of artificial intelligence for Image Analysis in breast cancer
screening programmes: Systematic Review of Test Accuracy. The BMJ.
https://www.bmj.com/content/374/bmj.n1872
Fu, Y., Zhou, J., & Li, J. (4202, May). Diagnostic performance of ultrasound-based artificial
intelligence for predicting key molecular markers in breast cancer: A systematic review and
meta-analysis. PLOS ONE.
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0303669
Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, T. (2019, July). Breast cancer detection and
diagnosis using Mammographic Data: Systematic Review. Journal of Medical Internet
Research. https://www.jmir.org/2019/7/e14464/
Horn, S., & Fehse, B. (2024, May 15). Wie sicher ist die gentherapie? - die Innere Medizin.
SpringerLink. https://link.springer.com/article/10.1007/s00108-024-01711-5
Howard , F. M., Kochanny, S., Koshy, M., Spiotto , M., & Pearson , A. T. (2020, November).
Machine learning-guided adjuvant treatment of head and neck cancer. JAMA network
open. https://pubmed.ncbi.nlm.nih.gov/33211108/
Hu, K.-L., Wang, S., Ye, X., & Zhang, D. (2020a, July). Effects of BRCA gene mutation on
female reproductive potential: A systematic review. Redirecting.
https://doi.org/10.1016/j.maturitas.2020.04.011
Hu, K.-L., Wang, S., Ye, X., & Zhang, D. (2020b, July). Effects of BRCA gene mutation on
female reproductive potential: A systematic review. Redirecting.
https://doi.org/10.1016/j.maturitas.2020.04.011
Iida, Y., Watanabe, K., Ominami, Y., Toyoguchi, T., Murayama, T., & Honda, M. (2021,
June). Oxford academic. Oxford Academic. https://academic.oup.com/
Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020a, March). Biomarkers of
neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.
https://pubmed.ncbi.nlm.nih.gov/32192349/
Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020b, March). Biomarkers of
neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.
https://pubmed.ncbi.nlm.nih.gov/32192349/
Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020c, March). Biomarkers of
neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.
https://pubmed.ncbi.nlm.nih.gov/32192349/
Jiang, Y., Zhang , Z., Yuan , Q., Wang, W., Wang, H., Li, T., Huang, W., Xie, J., Chen, C.,
Sun, Z., Yu, J., Xu, Y., Poultsides, G. A., Xing, L., Zhou, Z., Li, G., & Li, R. (2022, May).
Predicting peritoneal recurrence and disease-free survival from CT images in gastric
cancer with Multitask Deep Learning: A retrospective study. The Lancet. Digital health.
https://pubmed.ncbi.nlm.nih.gov/35461691/
Jiang, Y., Zhang, Z., Wang, W., Huang, W., Chen, C., Xi, S., Ahmad, M. U., Ren, Y., Sang,
S., Xie, J., Wang, J.-Y., Xiong, W., Li, T., Han, Z., Yuan, Q., Xu, Y., Xing, L., Poultsides , G.,
Li, G., & Li , R. (2023, August). Biology-guided deep learning predicts prognosis and
cancer immunotherapy response. Nature communications.
https://pubmed.ncbi.nlm.nih.gov/37612313/
Jin, Y., Lan, A., Dai, Y., Jiang, L., & Liu, S. (2023, September 30). Development and testing
of a random forest-based machine learning model for predicting events among breast
cancer patients with a poor response to neoadjuvant chemotherapy - European Journal of
Medical Research. BioMed Central.
https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-01361-7
Kaidar-Person, O., Antunes, M., Cardoso, J. S., Ciani, O., Cruz, H., Micco, R. D., Gentilini,
O. D., Gonçalves, T., Gouveia, P., Heil, J., Kabata, P., Lopes, D., Martinho, M., Martins, H.,
Mavioso, C., Mika, M., Montenegro, H., Oliveira, H. P., Pfob, A., … on behalf of the
CINDERELLA Consortium. (2023, August). Evaluating the ability of an artificial-intelligence
cloud-based platform designed to provide information prior to locoregional therapy for
breast cancer in improving patient’s satisfaction with therapy: The Cinderella trial. PLOS
ONE. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0289365
Kisling, L. A., & Das, J. M. (2023, August 1). Prevention strategies. StatPearls [Internet].
https://www.ncbi.nlm.nih.gov/books/NBK537222/
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023a, August). Artificial Intelligence-supported screen
reading versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023b, August). Artificial Intelligence-supported screen
reading versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023c, August). Artificial Intelligence-supported screen reading
versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023d, August). Artificial Intelligence-supported screen
reading versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023e, August). Artificial Intelligence-supported screen
reading versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023f, August). Artificial Intelligence-supported screen reading
versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,
Andersson, I., & Rosso, A. (2023g, August). Artificial Intelligence-supported screen
reading versus ... The Lancet Oncology .
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract
Ma, M., Liu, R., Wen, C., Xu, W., Xu, Z., Wang, S., Wu, J., Pan, D., Zheng, B., Qin, G., &
Chen, W. (2021, October 13). Predicting the molecular subtype of breast cancer and
identifying interpretable imaging features using machine learning algorithms - european
radiology. SpringerLink. https://link.springer.com/article/10.1007/s00330-021-08271-4
Mittal, A., Mohanty, S. K., Gautam, V., Arora, S., Saproo, S., Gupta, R., S, R., Garg, P.,
Aggarwal, A., R, P., Dixit, N. K., Singh, V. P., Mehta, A., Tayal, J., Naidu, S., Sengupta, D.,
& Ahuja, G. (2022, January 1). Artificial intelligence uncovers carcinogenic human
metabolites. bioRxiv. https://www.biorxiv.org/content/10.1101/2021.11.20.469412v3.full
Morgan, K. K. (2024, June 19). How many people die of cancer a year?. WebMD.
https://www.webmd.com/cancer/how-many-cancer-deaths-per-year
Nero, C., Boldrini, L., Lenkowicz, J., Giudice, M. T., Piermattei, A., Inzani, F., Pasciuto, T.,
Minucci, A., Fagotti, A., Zannoni, G., Valentini, V., & Scambia, G. (2022a, September 26).
Deep-learning to predict BRCA mutation and survival from digital H&E slides of epithelial
ovarian cancer. MDPI. https://www.mdpi.com/1422-0067/23/19/11326
Nero, C., Boldrini, L., Lenkowicz, J., Giudice, M. T., Piermattei, A., Inzani, F., Pasciuto, T.,
Minucci, A., Fagotti, A., Zannoni, G., Valentini, V., & Scambia, G. (2022b, September 26).
Deep-learning to predict BRCA mutation and survival from digital H&E slides of epithelial
ovarian cancer. MDPI. https://www.mdpi.com/1422-0067/23/19/11326
Prelaj, A., Miskovic, V., Zanitti, M., Trovo, F., Genova, C., Viscardi, G., Rebuzzi, S. E.,
Mazzeo, L., Provenzano, L., Kosta, S., Favali, M., Spagnoletti, A., Castelo-Branco, L.,
Dolezal, J., Pearson, A. T., Russo, G. L., Proto, C., Ganzinelli, M., Giani, C., … Pedrocchi,
A. L. (2023, October). Artificial Intelligence for predictive biomarker discovery in ...
https://www.annalsofoncology.org/article/S0923-7534(23)04331-4/fulltext
Priyanka, B., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018, April 30). Protox-II: A
webserver for the prediction of toxicity of chemicals | nucleic acids research | Oxford
academic. Nucleic Acids Research .
https://academic.oup.com/nar/article/46/W1/W257/4990033
Ruppin, E. (2024, April 18). NIH researchers develop AI tool with potential to more
precisely match cancer drugs to patients. National Institutes of Health.
respond%20to%20a%20specific%20drug.
Russo, V., Lallo, E., Munnia, A., Spedicato, M., Messerini, L., D’Aurizio, R., Ceroni, E. G.,
Brunelli, G., Galvano, A., Russo, A., Landini, I., Nobili, S., Ceppi, M., Bruzzone, M.,
Cianchi, F., Staderini, F., Roselli, M., Riondino, S., Ferroni, P., … Peluso, M. (2022, August
. Artificial Intelligence Predictive models of response to cytotoxic chemotherapy alone
or combined to targeted therapy for metastatic colorectal cancer patients: A systematic
review and meta-analysis. MDPI. https://www.mdpi.com/2072-6694/14/16/4012
Senturk, N., Tuncel, G., Dogan, B., Aliyeva, L., Dundar, M. S., Ozemri Sag, S., Mocan, G.,
Temel, S. G., Dundar, M., & Ergoren, M. C. (2021, November 9). BRCA variations risk
assessment in breast cancers using different artificial intelligence models. MDPI.
https://www.mdpi.com/2073-4425/12/11/1774
Sinha, S., Vegesna, R., Mukherjee, S., Kammula, A. V., Dhruba, S. R., Wu, W., Kerr, D. L.,
Nair, N. U., Jones, M. G., Yosef, N., Stroganov, O. V., Grishagin, I., Aldape, K. D., Blakely,
C. M., Jiang, P., Thomas, C. J., Benes, C. H., Bivona, T. G., Schäffer, A. A., & Ruppin, E.
(2024, April 18). Perception predicts patient response and resistance to treatment using
single-cell transcriptomics of their tumors. Nature News.
https://www.nature.com/articles/s43018-024-00756-7
Sinha, T., Khan, A., Awan, M., Bokhari, S. F. H., Ali, K., Amir, M., Jadhav, A. N., Bakht, D.,
Puli, S. T., Burhanuddin, M., & Jadhav, D. A. N. (2024a, May 28). Artificial Intelligence and
machine learning in predicting the response to immunotherapy in non-small cell lung
carcinoma: A systematic review. Cureus.
https://www.cureus.com/articles/256635-artificial-intelligence-and-machine-learning-in-pred
icting-the-response-to-immunotherapy-in-non-small-cell-lung-carcinoma-a-systematic-revie
w#!/
Sinha, T., Khan, A., Awan, M., Bokhari, S. F. H., Ali, K., Amir, M., Jadhav, A. N., Bakht, D.,
Puli, S. T., Burhanuddin, M., & Jadhav, D. A. N. (2024b, May 28). Artificial Intelligence and
machine learning in predicting the response to immunotherapy in non-small cell lung
carcinoma: A systematic review. Cureus.
https://www.cureus.com/articles/256635-artificial-intelligence-and-machine-learning-in-pred
icting-the-response-to-immunotherapy-in-non-small-cell-lung-carcinoma-a-systematic-revie
w#!/
Torre , L. A., Siegel , R. L., Ward, E. M., & Jemal , A. (2016, January 12). Global cancer
incidence and mortality rates and trends—an update | cancer epidemiology, Biomarkers &
Prevention | American Association for Cancer Research. American Association for Cancer
Research .
https://aacrjournals.org/cebp/article/25/1/16/157144/Global-Cancer-Incidence-and-Mortalit
y-Rates-and
Win, A. K., Lindor, N. M., & Jenkins, M. A. (2013, March 19). Risk of breast cancer in Lynch
Syndrome: A systematic review - breast cancer research. BioMed Central.
https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3405
Yamamoto, T., Iwasaki, K., Iida, Y., Yuki, K., Nakaji, F., Yamashiro, H., Toyoguchi, T., &
Terazono, A. (2024, March 4). Rapid fiber-detection technique by artificial intelligence in
phase-contrast microscope images of simulated atmospheric samples | annals of work
exposures and Health | Oxford academic. Annals of Work exposures and Health.
https://academic.oup.com/annweh/article/68/4/420/7619060
Weidlich, V., & Weidlich, G. A. (2018, April 13). Artificial Intelligence in medicine and
radiation oncology. Cureus.
https://www.cureus.com/articles/11443-artificial-intelligence-in-medicine-and-radiation-onc
ology#!/
Downloads
Posted
Categories
License
Copyright (c) 2025 Bella Mital

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.