Preprint / Version 1

The Impact of AI in Breast Cancer

##article.authors##

  • Bella Mital Syosset High School

DOI:

https://doi.org/10.58445/rars.3306

Keywords:

Artificial Intelligence (AI), Breast Cancer, Cancer Diagnosis

Abstract

Breast cancer remains one of the leading causes of mortality among women worldwide, demanding continuous innovation in prevention, diagnosis, and treatment. This review explores the transformative role of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), in addressing these challenges. AI-driven models have demonstrated remarkable potential in enhancing early detection accuracy through mammogram interpretation, reducing false negatives and positives, and supporting radiologists in diagnosis. Preventative applications, such as carcinogen identification systems (e.g., Metabokiller, ProTox-II) and genetic risk prediction models for BRCA mutations, illustrate AI’s ability to identify high-risk individuals and environments before disease onset. In treatment, AI contributes to precision medicine by predicting patient responses to chemotherapy, immunotherapy, and targeted drug therapies, enabling the development of personalized treatment plans. Emerging DL frameworks also aid in image reconstruction, biomarker identification, and noninvasive prognostics, promoting cost-effective and patient-centered care. Despite these advancements, ethical challenges—such as data bias, limited dataset diversity, and patient privacy—remain barriers to clinical integration. The study concludes that with improved data transparency and regulatory oversight, AI could revolutionize breast cancer management through enhanced accuracy, accessibility, and individualized medical care.

 

References

Akpan, A., Tabue-Teguo, M., & Fougère, B. (2019, January 1). Neurocognitive disorders:

Importance of early/timely detection in daily clinical practice. Journal of Alzheimer’s

Disease. https://content.iospress.com/articles/journal-of-alzheimers-disease/jad180381

Alarcón-Zendejas, A. P., Scavuzzo, A., Jiménez-Ríos, M. A., Álvarez-Gómez, R. M.,

Montiel-Manríquez, R., Castro-Hernández, C., Jiménez-Dávila, M. A., Pérez-Montiel, D.,

González-Barrios, R., Jiménez-Trejo, F., Arriaga-Canon, C., & Herrera, L. A. (2022, April

. The promising role of new molecular biomarkers in prostate cancer: From coding and

non-coding genes to artificial intelligence approaches. Nature News.

https://www.nature.com/articles/s41391-022-00537-2

Balmana , J., Diez, O., & Cardoso, F. (2011, September). BRCA in breast cancer: ESMO

clinical practice guidelines.

https://www.annalsofoncology.org/article/S0923-7534(19)38796-4/fulltext#:~:text=The

estimated population frequency of,ethnic groups and geographical areas.

Cancer Research infrastructure . (2024, May). Ai and cancer. AI and Cancer - NCI.

https://www.cancer.gov/research/infrastructure/artificial-intelligence

Central for Disease Control and Prevention, C. (2024, June 13). U.S. Cancer Statistics

Breast Cancer Stat Bite. Centers for Disease Control and Prevention.

https://www.cdc.gov/united-states-cancer-statistics/publications/breast-cancer-stat-bite.htm

l#:~:text=Based%20on%20the%20most%20recent,females%20died%20from%20breast%

cancer

Chang, T., Cao, Y., Sfreddo, H., Dhruba, S., Lee, S., Valero, C., Yoo, S. K., Chowell, D.,

Morris, L. G., & Ruppin, E. (2024, July 9). AI tool predict response to cancer therapy.

National Institutes of Health.

https://www.nih.gov/news-events/nih-research-matters/ai-tool-predicts-response-cancer-th

erapy#:~:text=Scientists%20developed%20an%20AI%20tool,personalized%20cancer%20

treatments%20for%20patients.

Chang, T.-G., Cao, Y., Sfreddo, H. J., Dhruba, S. R., Lee, S.-H., Valero, C., Yoo, S.-K.,

Chowell, D., Morris, L. G. T., & Ruppin, E. (2024, June 3). Loris robustly predicts patient

outcomes with immune checkpoint blockade therapy using common clinical, pathologic

and genomic features. Nature News. https://www.nature.com/articles/s43018-024-00772-7

Chen, Z.-H., Lin, L., Wu, C.-F., Li, C.-F., Xu, R.-H., & Sun, Y. (2021, October). Artificial

Intelligence for assisting cancer diagnosis and treatment in the era of Precision Medicine.

Cancer communications (London, England). https://pubmed.ncbi.nlm.nih.gov/34613667/

Cogliano , V. J., Baan, R. A., Straif, K., Grosse, Y., Secretan, M. B., Ghissassi, F. E., &

Kleihues, P. (2004, June 3). The Science and Practice of Carcinogen Identification and

Evaluation. EHP publishing . https://ehp.niehs.nih.gov/doi/10.1289/ehp.6950

Correa, H. (2016, April 13). Li–Fraumeni syndrome. Journal of Pediatric Genetics.

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0036-1579759

Dembrower, K., Crippa, A., Colon, E., & Ekland, M. (2023). Artificial Intelligence for Breast

Cancer Detection in ... the Lancet digital health .

https://www.thelancet.com/journals/landig/article/PIIS2589-7500(23)00153-X/fulltext

Deo, R. C. (2015, November 17). Machine learning in medicine | circulation. AHA Journal .

https://www.ahajournals.org/doi/full/10.1161/circulationaha.115.001593

Euhus, D. M. (2015, March 28). Risk-reducing mastectomy for BRCA gene mutation

carriers - annals of surgical oncology. SpringerLink.

https://link.springer.com/article/10.1245/s10434-015-4537-9

Freeman, K., Geppert, J., Stinton, C., Todkill, D., Johnson, S., Clarke, A., & Taylor-Phillips,

S. (2021, September 2). Use of artificial intelligence for Image Analysis in breast cancer

screening programmes: Systematic Review of Test Accuracy. The BMJ.

https://www.bmj.com/content/374/bmj.n1872

Fu, Y., Zhou, J., & Li, J. (4202, May). Diagnostic performance of ultrasound-based artificial

intelligence for predicting key molecular markers in breast cancer: A systematic review and

meta-analysis. PLOS ONE.

https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0303669

Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, T. (2019, July). Breast cancer detection and

diagnosis using Mammographic Data: Systematic Review. Journal of Medical Internet

Research. https://www.jmir.org/2019/7/e14464/

Horn, S., & Fehse, B. (2024, May 15). Wie sicher ist die gentherapie? - die Innere Medizin.

SpringerLink. https://link.springer.com/article/10.1007/s00108-024-01711-5

Howard , F. M., Kochanny, S., Koshy, M., Spiotto , M., & Pearson , A. T. (2020, November).

Machine learning-guided adjuvant treatment of head and neck cancer. JAMA network

open. https://pubmed.ncbi.nlm.nih.gov/33211108/

Hu, K.-L., Wang, S., Ye, X., & Zhang, D. (2020a, July). Effects of BRCA gene mutation on

female reproductive potential: A systematic review. Redirecting.

https://doi.org/10.1016/j.maturitas.2020.04.011

Hu, K.-L., Wang, S., Ye, X., & Zhang, D. (2020b, July). Effects of BRCA gene mutation on

female reproductive potential: A systematic review. Redirecting.

https://doi.org/10.1016/j.maturitas.2020.04.011

Iida, Y., Watanabe, K., Ominami, Y., Toyoguchi, T., Murayama, T., & Honda, M. (2021,

June). Oxford academic. Oxford Academic. https://academic.oup.com/

Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020a, March). Biomarkers of

neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.

https://pubmed.ncbi.nlm.nih.gov/32192349/

Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020b, March). Biomarkers of

neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.

https://pubmed.ncbi.nlm.nih.gov/32192349/

Iwamoto , T., Kajiwara, Y., Zhu, Y., & Iida, S. (2020c, March). Biomarkers of

neoadjuvant/adjuvant chemotherapy for breast cancer. Chinese clinical oncology.

https://pubmed.ncbi.nlm.nih.gov/32192349/

Jiang, Y., Zhang , Z., Yuan , Q., Wang, W., Wang, H., Li, T., Huang, W., Xie, J., Chen, C.,

Sun, Z., Yu, J., Xu, Y., Poultsides, G. A., Xing, L., Zhou, Z., Li, G., & Li, R. (2022, May).

Predicting peritoneal recurrence and disease-free survival from CT images in gastric

cancer with Multitask Deep Learning: A retrospective study. The Lancet. Digital health.

https://pubmed.ncbi.nlm.nih.gov/35461691/

Jiang, Y., Zhang, Z., Wang, W., Huang, W., Chen, C., Xi, S., Ahmad, M. U., Ren, Y., Sang,

S., Xie, J., Wang, J.-Y., Xiong, W., Li, T., Han, Z., Yuan, Q., Xu, Y., Xing, L., Poultsides , G.,

Li, G., & Li , R. (2023, August). Biology-guided deep learning predicts prognosis and

cancer immunotherapy response. Nature communications.

https://pubmed.ncbi.nlm.nih.gov/37612313/

Jin, Y., Lan, A., Dai, Y., Jiang, L., & Liu, S. (2023, September 30). Development and testing

of a random forest-based machine learning model for predicting events among breast

cancer patients with a poor response to neoadjuvant chemotherapy - European Journal of

Medical Research. BioMed Central.

https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-01361-7

Kaidar-Person, O., Antunes, M., Cardoso, J. S., Ciani, O., Cruz, H., Micco, R. D., Gentilini,

O. D., Gonçalves, T., Gouveia, P., Heil, J., Kabata, P., Lopes, D., Martinho, M., Martins, H.,

Mavioso, C., Mika, M., Montenegro, H., Oliveira, H. P., Pfob, A., … on behalf of the

CINDERELLA Consortium. (2023, August). Evaluating the ability of an artificial-intelligence

cloud-based platform designed to provide information prior to locoregional therapy for

breast cancer in improving patient’s satisfaction with therapy: The Cinderella trial. PLOS

ONE. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0289365

Kisling, L. A., & Das, J. M. (2023, August 1). Prevention strategies. StatPearls [Internet].

https://www.ncbi.nlm.nih.gov/books/NBK537222/

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023a, August). Artificial Intelligence-supported screen

reading versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023b, August). Artificial Intelligence-supported screen

reading versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023c, August). Artificial Intelligence-supported screen reading

versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023d, August). Artificial Intelligence-supported screen

reading versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023e, August). Artificial Intelligence-supported screen

reading versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023f, August). Artificial Intelligence-supported screen reading

versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Lang, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogburg, C., Sartor, H., Hofvind, S.,

Andersson, I., & Rosso, A. (2023g, August). Artificial Intelligence-supported screen

reading versus ... The Lancet Oncology .

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(23)00298-X/abstract

Ma, M., Liu, R., Wen, C., Xu, W., Xu, Z., Wang, S., Wu, J., Pan, D., Zheng, B., Qin, G., &

Chen, W. (2021, October 13). Predicting the molecular subtype of breast cancer and

identifying interpretable imaging features using machine learning algorithms - european

radiology. SpringerLink. https://link.springer.com/article/10.1007/s00330-021-08271-4

Mittal, A., Mohanty, S. K., Gautam, V., Arora, S., Saproo, S., Gupta, R., S, R., Garg, P.,

Aggarwal, A., R, P., Dixit, N. K., Singh, V. P., Mehta, A., Tayal, J., Naidu, S., Sengupta, D.,

& Ahuja, G. (2022, January 1). Artificial intelligence uncovers carcinogenic human

metabolites. bioRxiv. https://www.biorxiv.org/content/10.1101/2021.11.20.469412v3.full

Morgan, K. K. (2024, June 19). How many people die of cancer a year?. WebMD.

https://www.webmd.com/cancer/how-many-cancer-deaths-per-year

Nero, C., Boldrini, L., Lenkowicz, J., Giudice, M. T., Piermattei, A., Inzani, F., Pasciuto, T.,

Minucci, A., Fagotti, A., Zannoni, G., Valentini, V., & Scambia, G. (2022a, September 26).

Deep-learning to predict BRCA mutation and survival from digital H&E slides of epithelial

ovarian cancer. MDPI. https://www.mdpi.com/1422-0067/23/19/11326

Nero, C., Boldrini, L., Lenkowicz, J., Giudice, M. T., Piermattei, A., Inzani, F., Pasciuto, T.,

Minucci, A., Fagotti, A., Zannoni, G., Valentini, V., & Scambia, G. (2022b, September 26).

Deep-learning to predict BRCA mutation and survival from digital H&E slides of epithelial

ovarian cancer. MDPI. https://www.mdpi.com/1422-0067/23/19/11326

Prelaj, A., Miskovic, V., Zanitti, M., Trovo, F., Genova, C., Viscardi, G., Rebuzzi, S. E.,

Mazzeo, L., Provenzano, L., Kosta, S., Favali, M., Spagnoletti, A., Castelo-Branco, L.,

Dolezal, J., Pearson, A. T., Russo, G. L., Proto, C., Ganzinelli, M., Giani, C., … Pedrocchi,

A. L. (2023, October). Artificial Intelligence for predictive biomarker discovery in ...

https://www.annalsofoncology.org/article/S0923-7534(23)04331-4/fulltext

Priyanka, B., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018, April 30). Protox-II: A

webserver for the prediction of toxicity of chemicals | nucleic acids research | Oxford

academic. Nucleic Acids Research .

https://academic.oup.com/nar/article/46/W1/W257/4990033

Ruppin, E. (2024, April 18). NIH researchers develop AI tool with potential to more

precisely match cancer drugs to patients. National Institutes of Health.

https://www.nih.gov/news-events/news-releases/nih-researchers-develop-ai-tool-potentialmore-precisely-match-cancer-drugs-patients#:~:text=In%20a%20proof%2Dof%2Dconcept,

respond%20to%20a%20specific%20drug.

Russo, V., Lallo, E., Munnia, A., Spedicato, M., Messerini, L., D’Aurizio, R., Ceroni, E. G.,

Brunelli, G., Galvano, A., Russo, A., Landini, I., Nobili, S., Ceppi, M., Bruzzone, M.,

Cianchi, F., Staderini, F., Roselli, M., Riondino, S., Ferroni, P., … Peluso, M. (2022, August

. Artificial Intelligence Predictive models of response to cytotoxic chemotherapy alone

or combined to targeted therapy for metastatic colorectal cancer patients: A systematic

review and meta-analysis. MDPI. https://www.mdpi.com/2072-6694/14/16/4012

Senturk, N., Tuncel, G., Dogan, B., Aliyeva, L., Dundar, M. S., Ozemri Sag, S., Mocan, G.,

Temel, S. G., Dundar, M., & Ergoren, M. C. (2021, November 9). BRCA variations risk

assessment in breast cancers using different artificial intelligence models. MDPI.

https://www.mdpi.com/2073-4425/12/11/1774

Sinha, S., Vegesna, R., Mukherjee, S., Kammula, A. V., Dhruba, S. R., Wu, W., Kerr, D. L.,

Nair, N. U., Jones, M. G., Yosef, N., Stroganov, O. V., Grishagin, I., Aldape, K. D., Blakely,

C. M., Jiang, P., Thomas, C. J., Benes, C. H., Bivona, T. G., Schäffer, A. A., & Ruppin, E.

(2024, April 18). Perception predicts patient response and resistance to treatment using

single-cell transcriptomics of their tumors. Nature News.

https://www.nature.com/articles/s43018-024-00756-7

Sinha, T., Khan, A., Awan, M., Bokhari, S. F. H., Ali, K., Amir, M., Jadhav, A. N., Bakht, D.,

Puli, S. T., Burhanuddin, M., & Jadhav, D. A. N. (2024a, May 28). Artificial Intelligence and

machine learning in predicting the response to immunotherapy in non-small cell lung

carcinoma: A systematic review. Cureus.

https://www.cureus.com/articles/256635-artificial-intelligence-and-machine-learning-in-pred

icting-the-response-to-immunotherapy-in-non-small-cell-lung-carcinoma-a-systematic-revie

w#!/

Sinha, T., Khan, A., Awan, M., Bokhari, S. F. H., Ali, K., Amir, M., Jadhav, A. N., Bakht, D.,

Puli, S. T., Burhanuddin, M., & Jadhav, D. A. N. (2024b, May 28). Artificial Intelligence and

machine learning in predicting the response to immunotherapy in non-small cell lung

carcinoma: A systematic review. Cureus.

https://www.cureus.com/articles/256635-artificial-intelligence-and-machine-learning-in-pred

icting-the-response-to-immunotherapy-in-non-small-cell-lung-carcinoma-a-systematic-revie

w#!/

Torre , L. A., Siegel , R. L., Ward, E. M., & Jemal , A. (2016, January 12). Global cancer

incidence and mortality rates and trends—an update | cancer epidemiology, Biomarkers &

Prevention | American Association for Cancer Research. American Association for Cancer

Research .

https://aacrjournals.org/cebp/article/25/1/16/157144/Global-Cancer-Incidence-and-Mortalit

y-Rates-and

Win, A. K., Lindor, N. M., & Jenkins, M. A. (2013, March 19). Risk of breast cancer in Lynch

Syndrome: A systematic review - breast cancer research. BioMed Central.

https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3405

Yamamoto, T., Iwasaki, K., Iida, Y., Yuki, K., Nakaji, F., Yamashiro, H., Toyoguchi, T., &

Terazono, A. (2024, March 4). Rapid fiber-detection technique by artificial intelligence in

phase-contrast microscope images of simulated atmospheric samples | annals of work

exposures and Health | Oxford academic. Annals of Work exposures and Health.

https://academic.oup.com/annweh/article/68/4/420/7619060

Weidlich, V., & Weidlich, G. A. (2018, April 13). Artificial Intelligence in medicine and

radiation oncology. Cureus.

https://www.cureus.com/articles/11443-artificial-intelligence-in-medicine-and-radiation-onc

ology#!/

Downloads

Posted

2025-10-30