How Cell Cycle Transcription Factors Inhibit Neural Proliferation
DOI:
https://doi.org/10.58445/rars.318Keywords:
Neuron, Cell Cycle Arrest, Transcription Factor, Apoptosis, G0 Phase, Anti-proliferation, CDK InhibitionAbstract
Adult neurons are incapable of cellular proliferation due to their abnormal cell cycle. Upon maturation, post-mitotic neurons face terminal cell cycle arrest at the G1/S checkpoint. If cell cycle re-entry is attempted, neurons trigger pro-apoptotic pathways that kill the cell before any proliferative progress can be made (Figure 1). These processes inhibiting neural replication are highly influenced by cell cycle transcription factors, which face neuro-specific regulations to induce such unique cellular events. This paper examines how the regulations and differential functions of neural cell cycle transcription factors facilitate neurons’ inability to proliferate. Specifically, we review how BHLH, E2F, SMAD, FOXO1, SP1, c-MYC, p53, and Brn-3a regulate cell cycle arrest, and how E2F1, FOXO1, C-JUN, and p53 facilitate neural apoptosis upon attempted cell cycle re-entry.
References
Alberts, B., Johnson, A., & Lewis, J. (2002). An Overview of the Cell Cycle. Molecular Biology of the Cell, 4. https://www.ncbi.nlm.nih.gov/books/NBK26869/
Bertoli, C., Skotheim, J. M., & Bruin, R. A. M. (2015). Control of Cell Cycle Transcription during G1 and S Phases. Nature Reviews Molecular Cell Biology, 14(8), 518–528. https://doi.org/10.1038%2Fnrm3629
Galderisi, U., Paolo Jori, F., & Giordano, A. (2003). Cell Cycle Regulation and Neural Differentiation. Oncogene, 22, 5208–5219. https://dpl6hyzg28thp.cloudfront.net/media/cell_cycle_regulation_and_neural_differentiation_2003.pdf
Creff, J., & Besson, A. (2020). Functional Versatility of the CDK Inhibitor p57Kip2. Cell Growth and Division, 8. https://doi.org/10.3389/fcell.2020.584590
Greene, L. A., Biswas, S. C., & Liu, D. X. (2003). Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death & Differentiation, 11, 49–60. https://doi.org/10.1038/sj.cdd.4401341
García-Campmany, L., & Martí, E. (2007). The TGFbeta intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. Development, 134(1), 65–75. https://doi.org/10.1242/dev.02702
Ochocinska, M. J., & Hitchcock, P. F. (2009). NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mechanisms of development, 126(3-4), 128–141. https://doi.org/10.1016/j.mod.2008.11.009
Uittenbogaard, M., & Chiaramello, A. (2006). The basic helix-loop-helix transcription factor Nex-1/Math-2 promotes neuronal survival of PC12 cells by modulating the dynamic expression of anti-apoptotic and cell cycle regulators. Journal of Neurochemistry, 92(3), 585–596. https://doi.org/10.1111%2Fj.1471-4159.2004.02886.x
Vandussen, K. L., & Samuelson, L. C. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Developmental Biology, 346(2), 215-223. https://doi.org/10.1016/j.ydbio.2010.07.026
Skaggs, K., Martin, D. M., & Novitch, B. G. (2011). Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and Notch signaling. Development, 138 (15), 3199–3211.https://doi.org/10.1242/dev.057281
Lacomme, M., Liaubet, L., Pituello, F., Bel-Vialar, S. (2012). NEUROG2 Drives Cell Cycle Exit of Neuronal Precursors by Specifically Repressing a Subset of Cyclins Acting at the G1 and S Phases of the Cell Cycle. Molecular Cell Biology, 32(13), 2596–2607. https://doi.org/10.1128%2FMCB.06745-11
Somnay, Y. R., Zarebczan Dull, B., Eide, J., Jaskula-Sztul, R., & Chen, H. (2015). Chrysin suppresses the achaete-scute complex-like1 and alters the neuroendocrine phenotype of carcinoids. Cancer Gene Therapy, 22(10), 496–505. https://doi.org/10.1038%2Fcgt.2015.49
Bertrand, N., Castro, D. S., Guillemot, F. (2002). Nature Reviews, 3, 517-529. http://www.bio.brandeis.edu/classes/nbio143/Papers/Neurogenesis/Bertrandetal.pdf
Lécuyer, E., Larivière, S., Sincennes, M., Haman, A., Lahlil, R., Todorova,M., Tremblay, M., Wilkes, B. C., Hoang,T. (2007). Protein Stability and Transcription Factor Complex Assembly Determined by the SCL-LMO2 Interaction. Journal of Biological Chemistry, 282(46), 33649-33658. https://doi.org/10.1074/jbc.M703939200
Yan, C. H., Levesque, M., Claxton, S., Johnson, R. L., & Ang, S. (2011). Lmx1a and Lmx1b Function Cooperatively to Regulate Proliferation, Specification, and Differentiation of Midbrain Dopaminergic Progenitors. Journal of Neuroscience, 31 (35), 12413-12425. https://doi.org/10.1523/JNEUROSCI.1077-11.2011
Yoshikawa, K. (2000). Cell cycle regulators in neural stem cells and postmitotic neurons. Neuroscience Research, 37, 1-14. https://dpl6hyzg28thp.cloudfront.net/media/cell_cycle_regulators_in_neurons.pdf
Giangrande, P. H., Zhu, W. Schlisio, S., Sun, X., Mori, S., Gaubatz, S., & Nevins, J. R. (2004). A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes & Development, 18, 2941-2951, http://www.genesdev.org/cgi/doi/10.1101/gad.1239304
Palazuelos, J., Kilngener, M., & Aguirre, A. (2014). TGF Signaling Regulates the Timing of CNS Myelination by Modulating Oligodendrocyte Progenitor Cell Cycle Exit through SMAD3/4/FoxO1/Sp1. The Journal of Neuroscience, 34(23), 7917–7930. https://www.jneurosci.org/content/jneuro/34/23/7917.full.pdf Palazuelos, J., Kilngener, M., & Aguirre, A. (2014). TGF Signaling Regulates the Timing of CNS Myelination by Modulating Oligodendrocyte Progenitor Cell Cycle Exit through SMAD3/4/FoxO1/Sp1. The Journal of Neuroscience, 34(23), 7917–7930. https://www.jneurosci.org/content/jneuro/34/23/7917.full.pdf
Kim, A. H., & Bonni A. (2008). Cell Cycle, 7(24), 3819-3822. https://doi.org/10.4161/cc.7.24.7215
Liang, YY., Brunicardi, F. & Lin, X. (2009). Smad3 mediates immediate early induction of Id1 by TGF-β. Cell Research,19, 140–148. https://doi.org/10.1038/cr.2008.321
Lu, J., Wu, Y., Sousa, N., & Almeida, O. F. (2005). SMAD pathway mediation of BDNF and TGF beta 2 regulation of proliferation and differentiation of hippocampal granule neurons. Development, 132(14), 3231–3242. https://doi.org/10.1242/dev.01893
Ullah, I., Sun, W., Tang, L., & Feng, J. (2018). Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. Journal of Cancer, 9(21), 4018–4028. https://doi.org/10.7150%2Fjca.20906
Hester, M., Thompson, J. C., Mills, J., Liu, Y., El-Hodiri, H. M., & Weinstein, M. (2005). Smad1 and Smad8 function similarly in mammalian central nervous system development. Molecular and cellular biology, 25(11), 4683–4692. https://doi.org/10.1128/MCB.25.11.4683-4692.2005
Xie, Z., Chen, Y., Li, Z., Bai, G., Zhu, Y., Yan, R., Tan, F., Chen, Y., Guillemot, F., Li, L., & Jing, N. (2011). Smad6 promotes neuronal differentiation in the intermediate zone of the dorsal neural tube by inhibition of the Wnt/β-catenin pathway. PNAS, 108(29), 12119–12124. https://doi.org/10.1073%2Fpnas.1100160108
Weizmann Institute of Science. (2023). SMAD2 Gene - SMAD Family Member 2. GeneCards. https://www.genecards.org/cgi-bin/carddisp.pl?gene=SMAD2&keywords=SMAD2
Weizmann Institute of Science. (2023). SMAD3 Gene - SMAD Family Member 3. GeneCards. https://www.genecards.org/cgi-bin/carddisp.pl?gene=SMAD3&keywords=SMAD2
Krampert, M., Chirasani, S. R., Wachs, F., Aigner, R., Bogdahn, U., Yingling, J. M., Heldin, C., Aigner, L., & Heuchel, R. (2010). Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner. Molecular and Cellular Biology, 30(14), 3685–3694. https://doi.org/10.1128%2FMCB.00434-09
Tedeschi, A., & Giovanni, S. D. (2009). The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Reports, 10(6), 576–583. https://doi.org/10.1038%2Fembor.2009.89
Chen, J. (2016). The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 6(3). https://doi.org/10.1101%2Fcshperspect.a026104
Kumar, P., Naumann, U., Aigner, L., Wischhusen, J., Beier, C. P., & Beier, D. (2015). Impaired TGF-β induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53. American Journal of Cancer Research, 5(11), 3436–3445. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697689/
P13405 · RB_MOUSE. (n.d.) UniProt. Retrieved August 2, 2023, from https://www.uniprot.org/uniprotkb/P13405/entry#sequences
P25233 · NECD_MOUSE. (n.d.) UniProt. Retrieved August 2, 2023, from https://www.uniprot.org/uniprotkb/P25233/entry#structure
Miller, F. D., Pozniak, C. D., & Walsh, G.S. (2000). Neuronal life and death: an essential role for the p53 family. Cell Death & Differentiation, 7, 880-888. https://doi.org/10.1038/sj.cdd.4400736
Gilley, J., Coffer, P. J., & Ham, J. (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. The Journal of Cell Biology, 162(4), 613-622. http://www.jcb.org/cgi/doi/10.1083/jcb.200303026
Frade, J. M., & Ovejero-Benito, M. C. (2015). Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle, 14(5), 712–720. https://doi.org/10.1080%2F15384101.2015.1004937
Estus, S., Zaks, W. J., Freeman, R. S., Gruda, M., Bravo, R., & Johnson, E. M. Jr. (1994). Altered Gene Expression in Neurons during Programmed Cell Death: Identification of c-jun as Necessary for Neuronal Apoptosis. The Journal of Cell Biology, 23(6), 1717-1727. https://rupress.org/jcb/article-pdf/127/6/1717/1264468/1717.pdf
Bashari, D., Hacohen, D., Ginsberg, D. (2011). JNK activation is regulated by E2F and promotes E2F1-induced apoptosis. Cellular Signaling, 23(1), 65-70. https://www.sciencedirect.com/science/article/abs/pii/S0898656810002317
Reddy, C. E., Albanito, L., De Marco, P., Aiello, D., Maggiolini, M., Napoli, A., & Musti, A. M. (2013). Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons. Cell Death and Disease, 4. https://doi.org/10.1038/cddis.2013.381
Hershko, T., Chaussepied, M., Oren, M., & Ginsberg, D. (2005). Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F. Cell death and differentiation, 12(4), 377–383. https://doi.org/10.1038/sj.cdd.4401575
Wang, D. B., Kinoshita, C., Kinoshita, Y., & Morrison, R. S. (2015). p53 and Mitochondrial Function in Neurons. Biochimica et Biophysica Acta, 1842(8), 1186-1197. https://doi.org/10.1016/j.bbadis.2013.12.015
Nakamizo, A., Amano, T., Zhang, W., Zhang, X., Ramadas, L., Liu, T., Bekele, B. N., Shono, T., Sasaki, T., Benedict, W. F., Sawaya, R., & Lang, F. F. (2008) Phosphorylation of Thr18 and Ser20 of p53 in Ad-p53–induced apoptosis. Neuro-Oncology, 10(3), 275–291. https://doi.org/10.1215/15228517-2008-015
Yogosawa, S., & Yoshida, K. (2018). Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer Science, 109(11), 3376–3382. https://doi.org/10.1111%2Fcas.13792
Thompson, T., Tovar, C., Yang, H., Carvajal, D., Vu, B. T., Xu, Q., Wahl, G. M., Heimbrook, D. C., & Vassilev, L. T. (2004). Phosphorylation of p53 on Key Serines Is Dispensable for Transcriptional Activation and Apoptosis. Protein Synthesis, Post-Translational Modification, and Degradation, 279(51), 53015-53022. https://doi.org/10.1074/jbc.M410233200
Loughery, J., Cox, M., Smith, L. M., & Meek, D. W. (2014). Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Research, 42(12), 7666–7680. https://doi.org/10.1093/nar/gku501
Downloads
Posted
Categories
License
Copyright (c) 2023 Auburne Mauger
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.