Preprint / Version 1

The Gut-Brain Connection: How Microbiota and Diet Influence Major Depressive Disorder

##article.authors##

  • Shreya Wunnava Mountain House High School

DOI:

https://doi.org/10.58445/rars.3172

Keywords:

Mental Health, Gut-Brain Axis, Gut Microbiota, Diet, Dysbiosis

Abstract

Approximately 8% of Americans are diagnosed with Major Depressive Disorder (MDD) annually, with millions of individuals experiencing alterations in mood, cognitive function, memory, and emotional regulation. The majority of existing literature emphasizes neurobiological mechanisms as primary contributors to MDD. However, emerging science implicates the gut-microbiota-brain (GMB) axis, which connects the digestive and nervous systems, as a significant factor in mental health. Gut microbiota, the complex ecosystem of bacteria within the gastrointestinal tract, influence the brain through bidirectional communication by releasing neurotransmitters, cytokines, and microbial metabolites through the GMB axis. Microbial dysbiosis, characterized by inflammation and immune dysfunction, has been associated with increased stress vulnerability, anxiety-like behaviors, depressive symptoms, and broader emotional dysregulation. Toxins such as Lipopolysaccharides (LPS) are released into the bloodstream, triggering neuroinflammation and disrupting neurotransmitter systems – both processes involved in MDD symptomatology. By contrast, eubiosis supports intestinal epithelium and immune function. The gut microbiota composition is primarily modulated by dietary patterns, as micro- and macronutrients present in foods can promote or suppress growth of specific bacteria phyla. Mediterranean-style diets show a significant growth of Firmicutes and Bacteroidetes through intake of fiber, complex carbohydrates, and fermented foods containing live microbes. Conversely, Western dietary patterns are associated with enrichment of Proteobacteria, associated with pro-inflammatory signaling triggered by elevated omega-6 fatty acid intake, refined sugars, and low dietary fiber. Taken together, evidence from both the Mediterranean and Western diets demonstrates a clear relationship emerges between dietary choices and mental health. 

References

Greenberg, P. E., Fournier, A.-A., Sisitsky, T., Simes, M., Berman, R., Koenigsberg, S. H., & Kessler, R. C. (2021). The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). PharmacoEconomics, 39(6), 653–665. https://doi.org/10.1007/s40273-021-01019-4

Louis-Jean, S. F., Agrawal, N., & Bisht, S. (2023). Fusobacterium nucleatum Pyogenic Liver Abscess and the Role of Bacterial Virulence and Gut Microbiota Dysbiosis. Cureus. https://doi.org/10.7759/cureus.34548

John, N. (2011). Western diet and inflammation. Integrative Medicine: A Clinician’s Journal, 10(2), 50–54. https://www.proquest.com/docview/894767380?fromopenview=true&pq-origsite=gscholar&sourcetype=Scholarly%20Journals

Cryan, J. F., & Leonard, B. E. (2000). 5-HT1A and beyond: the role of serotonin and its

receptors in depression and the antidepressant response. Human Psychopharmacology: Clinical and Experimental, 15(2), 113–135. https://doi.org/10.1002/(sici)1099-1077(200003)15:2%3C113::aid-hup150%3E3.0.co;2-w

Misiak, B., Łoniewski, I., Marlicz, W., Frydecka, D., Szulc, A., Rudzki, L., & Samochowiec, J.

(2020). The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, 109951. https://doi.org/10.1016/j.pnpbp.2020.109951

Mayer, E. A., Nance, K., & Chen, S. (2022). The Gut–Brain Axis. Annual Review of Medicine, 73(1), 439–453. https://doi.org/10.1146/annurev-med-042320-014032

Severino, A., Ege Tohumcu, Tamai, L., Dargenio, P., Porcari, S., Rondinella, D., Venturini, I., Maida, M., Gasbarrini, A., Cammarota, G., & Ianiro, G. (2024). The microbiome-driven impact of Western diet in the development of noncommunicable chronic disorders. Best Practice & Research Clinical Gastroenterology, 72, 101923–101923. https://doi.org/10.1016/j.bpg.2024.101923

Shoubridge, A. P., Choo, J. M., Martin, A. M., Keating, D. J., Wong, M.-L., Licinio, J., & Rogers, G. B. (2022). The gut microbiome and mental health: advances in research and emerging priorities. Molecular Psychiatry, 27(1). https://doi.org/10.1038/s41380-022-01479-w

Jeon, S. W., & Kim, Y. K. (2016). Neuroinflammation and cytokine abnormality in major

depression: Cause or consequence in that illness? World Journal of Psychiatry, 6(3), 283–293. https://doi.org/10.5498/wjp.v6.i3.283

Wang, H.-X., & Wang, Y.-P. (2016). Gut Microbiota-brain Axis. Chinese Medical Journal, 129(19), 2373–2380. https://doi.org/10.4103/0366-6999.190667

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474

Notting, F., Pirovano, W., Sybesma, W., & Kort, R. (2023). The butyrate-producing and

spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome, 4, e16. https://doi.org/10.1017/gmb.2023.14

Madison, A., & Kiecolt-Glaser, J. K. (2019). Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Current Opinion in Behavioral Sciences, 28(3), 105–110. https://doi.org/10.1016/j.cobeha.2019.01.011

Shin, N.-R., Whon, T. W., & Bae, J.-W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 33(9), 496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39, 1–12. https://iris.uniroma1.it/retrieve/e3835314-b1de-15e8-e053-a505fe0a3de9/Iebba_Eubiosis%20and%20dysbiosis_2016.pdf

Hashimoto, K. (2023). Neuroinflammation through the vagus nerve-dependent

gut–microbiota–brain axis in treatment-resistant depression (Vol. 278, pp. 61–77). Elsevier. https://doi.org/10.1016/bs.pbr.2023.01.003

Mugada, V. K., Reddy, K. P., Rajesh, K., & Anusha, M. (2025). Balancing your biome for better mental health: Gut microbiota and depression. Indian Journal of Natural Sciences. https://www.researchgate.net/publication/389028291_Balancing_your_Biome_for_Better_Mental_Health_Gut_Microbiota_and_Depression

Raymond, C. (2022). Investigating the influence of dietary fibre on intestinal health. Figshare. https://doi.org/10.25949/19441622.v1

Narvión, J., Marina Idalia Rojo-López, Martinez-Santos, P., Rossell, J., Ruiz-Alcaraz, A. J., Alonso, N., Ramos-Molina, B., Mauricio, D., & Josep Julve. (2023). NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients, 15(13), 2992–2992. https://doi.org/10.3390/nu15132992

Foster, J. A., Baker, G. B., & Dursun, S. M. (2021). The Relationship Between the Gut

Microbiome-Immune System-Brain Axis and Major Depressive Disorder. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.721126

Mohammed, H. A., Hashim, R. A., & K.M. Tawfiq. (2025). Western Diets Implications on Health, Including Its Influence on Metabolism and the Immunity. SAR Journal of Medical Biochemistry, 6(04), 63–70. https://doi.org/10.36346/sarjmb.2025.v06i04.001

Vasques-Monteiro, I. M. L., Silva-Veiga, F. M., Miranda, C. S., de Andrade Gonçalves, É. C. B., Daleprane, J. B., & Souza-Mello, V. (2021). A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Nutrition Research, 91, 26–35. https://doi.org/10.1016/j.nutres.2021.04.008

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2023). The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients, 15(9), 2150. https://doi.org/10.3390/nu15092150

Kovtun, A. S., Averina, O. V., Angelova, I. Y., Yunes, R. A., Zorkina, Y. A., Morozova, A. Y., Pavlichenko, A. V., Syunyakov, T. S., Karpenko, O. A., Kostyuk, G. P., & Danilenko, V. N. (2022). Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines, 10(9), 2162. https://doi.org/10.3390/biomedicines10092162

Du, Y., Gao, X.-R., Peng, L., & Ge, J.-F. (2020). Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6(6), e04097. https://doi.org/10.1016/j.heliyon.2020.e04097

Wichers, M. C., & Maes, M. (2004). The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-α-induced depression. Journal of Psychiatry and Neuroscience, 29(1), 11–17. https://www.jpn.ca/content/29/1/11.abstract

Moroni, F., Cozzi, A., Sili, M., & Mannaioni, G. (2012). Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. Journal of Neural Transmission, 119(2), 133–139. https://doi.org/10.1007/s00702-011-0763-x

Smoak, K. A., & Cidlowski, J. A. (2004). Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development, 125(10-11), 697–706. https://doi.org/10.1016/j.mad.2004.06.010

Gulyaeva, N. V. (2024). Augmented Cortisol and Antiglucocorticoid Therapy in Mood

Disorders: the Hippocampus as a Potential Drug Target. Journal of Evolutionary Biochemistry and Physiology, 60(4), 1516–1530. https://doi.org/10.1134/s0022093024040203

Souery, D., Papakostas, G. I., & Trivedi, M. H. (2006). Treatment-resistant depression. The Journal of Clinical Psychiatry, 67(Suppl. 6), 16–22.

Juruena, M. F., Pariante, C. M., Papadopoulos, A. S., Poon, L., Lightman, S., & Cleare, A. J. (2009). Prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. British Journal of Psychiatry, 194(4), 342–349. https://doi.org/10.1192/bjp.bp.108.050278

Khushboo, Siddiqi, N. J., de Lourdes Pereira, M., & Sharma, B. (2022). Neuroanatomical,

biochemical, and functional modifications in brain induced by treatment with antidepressants. Molecular Neurobiology, 59(6), 3349–3362. https://doi.org/10.1007/s12035-022-02780-z

Ferrara, G., Petrillo, M., Giani, T., Marrani, E., Filippeschi, C., Oranges, T., Simonini, G., & Cimaz, R. (2019). Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age. International Journal of Molecular Sciences, 20(2), 444. https://doi.org/10.3390/ijms20020444

Stokes, P. E. (1995). The potential role of excessive cortisol induced by HPA hyperfunction in the pathogenesis of depression. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 5 Suppl, 77–82. https://doi.org/10.1016/0924-977x(95)00039-r

Van, Adriany, T., Kristof Verbrugghe, & Luc De Vuyst. (2006). Kinetic Analysis of

Bifidobacterial Metabolism Reveals a Minor Role for Succinic Acid in the Regeneration of NAD + through Its Growth-Associated Production. Applied and Environmental Microbiology, 72(8), 5204–5210. https://doi.org/10.1128/aem.00146-06

Downloads

Posted

2025-10-05