Preprint / Version 1

Chemical Control of Heterotopic Ossification: ALK2(R206H)-Targeted PROTACs to treat FOP

##article.authors##

  • Yujie Zhu Great Neck South High School

DOI:

https://doi.org/10.58445/rars.3154

Keywords:

PROTAC (proteolysis-targeting chimera), PROTAC, Fibrodysplasia ossificans progressiva (FOP), FOP, heterotopic ossification (HO), ACVR1 R206H, ALK2 mutant-selective degradation, SMAD1/5/8 phosphorylation, E3 ligase recruitment (CRBN, VHL), rare disease therapy

Abstract

Fibrodysplasia Ossificans Progressiva (FOP) is a rare and severely disabling genetic disorder in which muscles, tendons, and ligaments are gradually replaced by bone. This progressive ossification stems from a mutation in the ACVR1 gene, also known as activin-like kinase 2 (ALK2). ACVR1 encodes ALK2, a type I BMP receptor that normally guides bone growth and tissue repair. In FOP, the common R206H mutation makes ALK2 abnormally active, triggering BMP signaling without proper cues. This drives connective tissue—including endothelial cells—to become bone-forming cells, slowly creating an unwanted secondary skeleton.The mutated receptor activates pathways that are normally reserved for bone development. Because of this, bone forms in soft tissues after even minor trauma or inflammation. One drug currently being studied for FOP is palovarotene. It aims to reduce abnormal bone growth. However, it has shown limited effectiveness and can cause side effects, especially in younger patients. These challenges highlight the need for more precise and reliable therapies. One promising strategy involves PROTACs (Proteolysis-Targeting Chimeras). These are specialized molecules that guide harmful proteins—such as mutant ALK2—to the cell’s natural disposal system, the ubiquitin–proteasome pathway. Unlike traditional treatments, PROTACs remove the protein entirely. This could lead to more specific and longer-lasting effects. This project explores the potential of using PROTACs to treat FOP. The focus is on the selective degradation of mutant ALK2. The study will examine how PROTACs might distinguish the mutant version from the normal one. It will also explore ways to improve delivery to bone and connective tissues. The goal is to provide well-supported suggestions on how PROTACs could become a new, targeted treatment option for FOP.

References

Aykul, S., Huang, L., Wang, L., Das, N. M., Reisman, S., Ray, Y., Zhang, Q., Rothman, N., Nannuru, K. C., Kamat, V., Brydges, S., Troncone, L., Johnsen, L., Yu, P. B., Fazio, S., Lees-Shepard, J., Schutz, K., Murphy, A. J., Economides, A. N., … Hatsell, S. J. (2022). Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1. The Journal of Clinical Investigation, 132(12), e153792. https://doi.org/10.1172/JCI153792

Davis, A. J., Brooijmans, N., Brubaker, J. D., Stevison, F., LaBranche, T. P., Albayya, F., Fleming, P., Hodous, B. L., Kim, J. L., Kim, S., Lobbardi, R., Palmer, M., Sheets, M. P., Vassiliadis, J., Wang, R., Williams, B. D., Wilson, D., Xu, L., Zhu, X. J., … Garner, A. P. (2024). An ALK2 inhibitor, BLU-782, prevents heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva. Science Translational Medicine, 16(749), eabp8334. https://doi.org/10.1126/scitranslmed.abp8334

Garber, K. (2022). The PROTAC gold rush. Nature Biotechnology, 40, 12–16. https://doi.org/10.1038/s41587-021-01173-2

Kossakowski, K., Cherniienko, A., Zaprutko, L., & Pawełczyk, A. (2025). FDA-approved kinase inhibitors in PROTAC design, development and synthesis. Journal of Enzyme Inhibition and Medicinal Chemistry, 40(1), Article 2542357. https://doi.org/10.1080/14756366.2025.2542357

Martelli, A., & Santos, A. R., Jr. (2014). Cellular and morphological aspects of fibrodysplasia ossificans progressiva: Lessons of formation, repair, and bone bioengineering. Organogenesis, 10(3), 303–311. https://doi.org/10.4161/org.29206

Mohedas, A. H., Wang, Y., Sanvitale, C. F., Canning, P., Choi, S., Xing, X., Bullock, A. N., Cuny, G. D., & Yu, P. B. (2014). Structure–activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva–causing mutants. Journal of Medicinal Chemistry, 57(19), 7900–7915. https://doi.org/10.1021/jm501177w

Pignolo, R. J., Shore, E. M., & Kaplan, F. S. (2011). Fibrodysplasia ossificans progressiva: Clinical and genetic aspects. Orphanet Journal of Rare Diseases, 6, 80. https://doi.org/10.1186/1750-1172-6-80

Rooney, L., & Jones, C. (2021). Recent advances in ALK2 inhibitors. ACS Omega, 6(32), 20729–20734. https://doi.org/10.1021/acsomega.1c02983

Rutherford, K. A., & McManus, K. J. (2024). PROTACs: Current and future potential as a precision medicine strategy to combat cancer. Molecular Cancer Therapeutics, 23(4), 454–463. https://doi.org/10.1158/1535-7163.MCT-23-0747

Shore, E. M. (2012). Fibrodysplasia ossificans progressiva (FOP): A human genetic disorder of extra-skeletal bone formation, or—How does one tissue become another? Wiley Interdisciplinary Reviews: Developmental Biology, 1(1), 153–165. https://doi.org/10.1002/wdev.9

Sun, X., Gao, H., Yang, Y., He, M., Wu, Y., Song, Y., Tong, Y., … Rao, Y. (2019). PROTACs: Great opportunities for academia and industry. Signal Transduction and Targeted Therapy, 4, 64. https://doi.org/10.1038/s41392-019-0101-6

Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87–105. https://doi.org/10.1016/j.gendis.2014.07.005

Yan, K.-N., Nie, Y.-Q., Wang, J.-Y., Yin, G.-L., Liu, Q., Hu, H., Sun, X., & Chen, X.-H. (2024). Accelerating PROTACs discovery through a direct-to-biology platform enabled by modular photoclick chemistry. Advanced Science, 11(26), 2400594. https://doi.org/10.1002/advs.202400594

Downloads

Posted

2025-10-01