Preprint / Version 1

The Cellular Aging: Mechanisms and Interventions

##article.authors##

  • Weihao Ze student

DOI:

https://doi.org/10.58445/rars.3104

Keywords:

Lifespan, Cellular Aging

Abstract

Aging is a complex process that happens in our bodies, especially inside our cells,  increasing vulnerability to diseases and death. The importance of studying aging lies in its direct association with major age-related diseases such as Alzheimer’s, cardiovascular disorders, and cancer. Given the rapid growth of the aging population worldwide, understanding these mechanisms is crucial for developing strategies to promote healthier longevity and reduce the socioeconomic burden of age-related diseases. Recent advances in biotechnology and geroscience have identified promising interventions to delay aging and extend lifespan. Emerging therapies, including stem cell treatments and gene-editing technologies and pharmacological interventions such as drugs that inhibit the activity of protein kinases that promote cell senescence. This review examines cellular aging and highlights current strategies, drawn from molecular biology, genetics, and clinical research, that aim to delay aging and promote sustained health and longevity.

References

Ahmed, A. S. I., Sheng, M. H., Wasnik, S., Baylink, D. J., & Lau, K.-H. W. (2017b). Effect of aging on stem cells. World Journal of Experimental Medicine, 7(1), 1–10. https://doi.org/10.5493/wjem.v7.i1.1

Boveris, A., & Navarro, A. (2008). Brain mitochondrial dysfunction in aging. IUBMB Life, 60(5), 308–314. https://doi.org/10.1002/iub.46

Camici, G. G., & Liberale, L. (2017a). Aging: The next cardiovascular disease? European Heart Journal, 38(21), 1621–1623. https://doi.org/10.1093/eurheartj/ehx239

Castellani, R. J., Rolston, R. K., & Smith, M. A. (2010c). Alzheimer Disease. Disease-a-Month, 56(9), 484–546. https://doi.org/10.1016/j.disamonth.2010.06.001

Colvin, M. M., Smith, C. A., Tullius, S. G., & Goldstein, D. R. (2017a). Aging and the immune response to organ transplantation. The Journal of Clinical Investigation, 127(7), 2523–2529. https://doi.org/10.1172/JCI90601

Di Francesco, A., Deighan, A. G., Litichevskiy, L., Chen, Z., Luciano, A., Robinson, L., Garland, G., Donato, H., Vincent, M., Schott, W., Wright, K. M., Raj, A., Prateek, G. V., Mullis, M., Hill, W. G., Zeidel, M. L., Peters, L. L., Harding, F., Botstein, D., … Churchill, G. A. (2024). Dietary restriction impacts health and lifespan of genetically diverse mice. Nature, 634(8034), 684–692. https://doi.org/10.1038/s41586-024-08026-3

DiLoreto, R., & Murphy, C. T. (2015). The cell biology of aging. Molecular Biology of the Cell, 26(25), 4524–4531. https://doi.org/10.1091/mbc.E14-06-1084

Ferrucci, L., Gonzalez-Freire, M., Fabbri, E., Simonsick, E., Tanaka, T., Moore, Z., Salimi, S., Sierra, F., & de Cabo, R. (2020). Measuring biological aging in humans: A quest. Aging Cell, 19(2), e13080. https://doi.org/10.1111/acel.13080

Fibroblasts: Advances in Inflammation, Autoimmunity and Cancer. (2021b). BoD – Books on Demand.

Gensler, H. L., & Bernstein, H. (1981b). DNA Damage as the Primary Cause of Aging. The Quarterly Review of Biology, 56(3), 279–303. https://doi.org/10.1086/412317

Goodell, M. A., & Rando, T. A. (2015). Stem cells and healthy aging. Science, 350(6265), 1199–1204. https://doi.org/10.1126/science.aab3388

Iqbal, K., Del C. Alonso, A., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C.-X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1739(2–3), 198–210. https://doi.org/10.1016/j.bbadis.2004.09.008

Jeyapalan, J. C., & Sedivy, J. M. (2008). Cellular senescence and organismal aging. Mechanisms of Ageing and Development, 129(7–8), 467–474. https://doi.org/10.1016/j.mad.2008.04.001

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021a). Alzheimer disease. Nature Reviews Disease Primers, 7(1), 33. https://doi.org/10.1038/s41572-021-00269-y

Masoro, E. J. (2000b). Caloric restriction and aging: An update. Experimental Gerontology, 35(3), 299–305. https://doi.org/10.1016/S0531-5565(00)00084-X

McGuire, P. J. (2019). Mitochondrial Dysfunction and the Aging Immune System. Biology, 8(2), Article 2. https://doi.org/10.3390/biology8020026

Miwa, S., Kashyap, S., Chini, E., & Zglinicki, T. von. (2022). Mitochondrial dysfunction in cell senescence and aging. The Journal of Clinical Investigation, 132(13). https://doi.org/10.1172/JCI158447

Nabel, E. G. (2003). Cardiovascular Disease. New England Journal of Medicine, 349(1), 60–72. https://doi.org/10.1056/NEJMra035098

Noto, S. (2023). Perspectives on Aging and Quality of Life. Healthcare, 11(15), Article 15. https://doi.org/10.3390/healthcare11152131

Olah, M., Menon, V., Habib, N., Taga, M. F., Ma, Y., Yung, C. J., Cimpean, M., Khairallah, A., Coronas-Samano, G., Sankowski, R., Grün, D., Kroshilina, A. A., Dionne, D., Sarkis, R. A., Cosgrove, G. R., Helgager, J., Golden, J. A., Pennell, P. B., Prinz, M., … De Jager, P. L. (2020a). Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nature Communications, 11(1), 6129. https://doi.org/10.1038/s41467-020-19737-2

Richter, T., & Zglinicki, T. V. (2007b). A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Experimental Gerontology, 42(11), 1039–1042. https://doi.org/10.1016/j.exger.2007.08.005

Sarkar, D., & Fisher, P. B. (2006b). Molecular mechanisms of aging-associated inflammation. Cancer Letters, 236(1), 13–23. https://doi.org/10.1016/j.canlet.2005.04.009

Schumacher, B., Pothof, J., Vijg, J., & Hoeijmakers, J. H. J. (2021). The central role of DNA damage in the ageing process. Nature, 592(7856), 695–703. https://doi.org/10.1038/s41586-021-03307-7

Sengoku, R. (2020). Aging and Alzheimer’s disease pathology. Neuropathology, 40(1), 22–29. https://doi.org/10.1111/neup.12626

Shapiro, E., Biezuner, T., & Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 14(9), 618–630. https://doi.org/10.1038/nrg3542

Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative Stress. Annual Review of Biochemistry, 86(Volume 86, 2017), 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

Titorenko, V. I. (2018a). Molecular and Cellular Mechanisms of Aging and Age-related Disorders. International Journal of Molecular Sciences, 19(7), Article 7. https://doi.org/10.3390/ijms19072049

Trifunovic, A., & Larsson, N.-G. (2008c). Mitochondrial dysfunction as a cause of ageing. Journal of Internal Medicine, 263(2), 167–178. https://doi.org/10.1111/j.1365-2796.2007.01905.x

Ulep, M. G., Saraon, S. K., & McLea, S. (2018a). Alzheimer Disease. The Journal for Nurse Practitioners, 14(3), 129–135. https://doi.org/10.1016/j.nurpra.2017.10.014

Wang, M., Song, W., Ming, C., Wang, Q., Zhou, X., Xu, P., Krek, A., Yoon, Y., Ho, L., Orr, M. E., Yuan, G.-C., & Zhang, B. (2022b). Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer’s disease: Review, recommendation, implementation and application. Molecular Neurodegeneration, 17(1), 17. https://doi.org/10.1186/s13024-022-00517-z

Xu, H., & Jia, J. (2021). Single-Cell RNA Sequencing of Peripheral Blood Reveals Immune Cell Signatures in Alzheimer’s Disease. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.645666

Yamada-Fukunaga, T., Yamada, M., Hamatani, T., Chikazawa, N., Ogawa, S., Akutsu, H., Miura, T., Miyado, K., Tarín, J. J., Kuji, N., Umezawa, A., & Yoshimura, Y. (2013). Age-associated telomere shortening in mouse oocytes. Reproductive Biology and Endocrinology, 11(1), 108. https://doi.org/10.1186/1477-7827-11-108

Yousefzadeh, M., Henpita, C., Vyas, R., Soto-Palma, C., Robbins, P., & Niedernhofer, L. (2021). DNA damage—How and why we age? eLife, 10, e62852. https://doi.org/10.7554/eLife.62852

Yun, M. H. (2015). Changes in Regenerative Capacity through Lifespan. International Journal of Molecular Sciences, 16(10), Article 10. https://doi.org/10.3390/ijms161025392

Downloads

Posted

2025-09-25

Categories