Preprint / Version 1

Better Understanding Digital and AI-enabled Technologies for Improving the Care of Patients with Acne Vulgaris

##article.authors##

  • Vivienne Chen Athenian School

DOI:

https://doi.org/10.58445/rars.3094

Abstract

Abstract

Background: Acne vulgaris is a common dermatologic condition, especially among young pubescent. This often leads to long-term physical and psychological conditions. While traditional treatments are effective, significant barriers to optimal outcomes remain. 

Objective: This review examined how emerging digital tools (eg, artificial intelligence, mobile applications, SMS reminders, chatbots, and teledermatology) are improving acne vulgaris treatment monitoring, patient adherence, and self-management.

Methods: A review of 136 recent literature was conducted on PubMed. This includes randomized controlled trials, qualitative studies, and technology evaluations of AI and digital tools (eg, digital education tools and patient-facing apps). Studies varied by different technological approaches and populations, focusing on adolescents and young adults. 

Results: Out of the 21 studies reviewed, multiple showed that patients’ self-regulation, quality of life, satisfaction, and clinical outcomes significantly improved via digital education platforms such as SMS reminders, mobile health apps, and AI-based image analysis tools. However, limitations included variable user engagement and privacy concerns. In terms of AI-based interventions, they were highly accurate in acne severity grading and lesion detection, but would benefit from more sufficient diversity in training datasets for AI systems.

Conclusions: AI and technological applications have great potential for improving acne treatment and patient engagement. While much evidence supports their value in improving adherence and monitoring, further research is needed to ensure accuracy and justify long-term clinical benefits.

References

Donnarumma, M., Fattore, D., Greco, V., Ferrillo, M., Vastarella, M., Chiodini, P., & Fabbrocini, G. (2019). How to Increase Adherence and Compliance in Acne Treatment? A Combined Strategy of SMS and Visual Instruction Leaflet. Dermatology, 235(6), 463–470. https://doi.org/10.1159/000502575

Myhill, T., Coulson, W., Nixon, P., Royal, S., McCormack, T., & Kerrouche, N. (2017). Use of Supplementary Patient Education Material Increases Treatment Adherence and Satisfaction Among Acne Patients Receiving Adapalene 0.1%/Benzoyl Peroxide 2.5% Gel in Primary Care Clinics: A Multicenter, Randomized, Controlled Clinical Study. Dermatology and Therapy, 7(4), 515–524. https://doi.org/10.1007/s13555-017-0203-4

Boker, A., Feetham, H. J., Armstrong, A., Purcell, P., & Jacobe, H. (2012). Do automated text messages increase adherence to acne therapy? Results of a randomized, controlled trial. Journal of the American Academy of Dermatology, 67(6), 1136–1142. https://doi.org/10.1016/j.jaad.2012.02.031

Okhovat, J.-P., Tenconi, F., Kim, J., & Kim, C. N. (2017). The Utility of Text Message Reminders for Acne Patients: A Pilot Study. American Journal of Clinical Dermatology, 18(1), 133–137. https://doi.org/10.1007/s40257-016-0236-y

Watson, A. J., Bergman, H., Williams, C. M., & Kvedar, J. C. (2010). A Randomized Trial to Evaluate the Efficacy of Online Follow-up Visits in the Management of Acne. Archives of Dermatology, 146(4). https://doi.org/10.1001/archdermatol.2010.29

Frühauf, J., Kröck, S., Quehenberger, F., Kopera, D., Fink-Puches, R., Komericki, P., Pucher, S., Arzberger, E., & Hofmann-Wellenhof, R. (2014). Mobile teledermatology helping patients control high-need acne: a randomized controlled trial. Journal of the European Academy of Dermatology and Venereology, 29(5), 919–924. https://doi.org/10.1111/jdv.12723

Chee, S.-N., Lowe, P., & Lim, A. (2016). Smartphone patient monitoring post-laser resurfacing. Australasian Journal of Dermatology, 58(4), e216–e222. https://doi.org/10.1111/ajd.12507

Choy, S.-P., Byung Jin Kim, Paolino, A., Tan, W., Man, S., Seo, J., Soo Choon Tan, Francis, L., Tsakok, T., Simpson, M. A., Barker, J., Lynch, M., Corbett, M., Smith, C., & Mahil, S. K. (2023). Systematic review of deep learning image analyses for the diagnosis and monitoring of skin disease. Npj Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00914-8

Khalid, U., Chen, L., Khan, A. A., Chen, B., Mehmood, F., & Muhammad Yasir. (2025). A smart facial acne disease monitoring for automate severity assessment using AI-enabled cloud-based internet of things. Deleted Journal, 28(1). https://doi.org/10.1007/s10791-025-09503-7

Phan, D. T., Ta, Q. B., Huynh, T. C., Vo, T. H., Nguyen, C. H., Park, S., Choi, J., & Oh, J. (2021). A smart LED therapy device with an automatic facial acne vulgaris diagnosis based on deep learning and internet of things application. Computers in Biology and Medicine, 136, 104610. https://doi.org/10.1016/j.compbiomed.2021.104610

Leng, W., Yang, C., Kou, M., Zhang, K., & Liu, X. (2025). Prediction of Patient Visits for Skin Diseases through Enhanced Evolutionary Computation and Ensemble Learning. Journal of Medical Systems, 49(1), 52. https://doi.org/10.1007/s10916-025-02185-0

Lei, C., Dang, K., Song, S., Wang, Z., Chew, S. P., Bian, R., Yang, X., Guan, Z., Lopes, C. I. M. de A., Wang, M. H., Choy, R. W. C., Hu, X., Lai, K. K. H., Chong, K. K. L., Pang, C. P., Song, X., Su, J., Ding, X., & Zhou, H. (2025). AI-assisted facial analysis in healthcare: From disease detection to comprehensive management. Patterns, 6(2), 101175. https://doi.org/10.1016/j.patter.2025.101175

Liu, Y.-S., Lu, N.-H., Shieh, P.-C., & Sun, C.-K. (2020). Combination of a Self-Regulation Module and Mobile Application to Enhance Treatment Outcome for Patients with Acne. Medicina, 56(6), 276. https://doi.org/10.3390/medicina56060276

Ip, A., Muller, I., Geraghty, A., Rumsby, K., Stuart, B., Little, P., & Santer, M. (2020). Supporting self-management amongst young people with acne vulgaris: development and feasibility randomised trial of a web-based behavioural intervention (Preprint). JMIR Dermatology. https://doi.org/10.2196/25918

Hewitt, R. M., Dale, C., Purcell, C., Pattinson, R., & Bundy, C. (2025). A qualitative exploration of the prospective acceptability of the MiDerm app; a complex digital intervention for adults living with skin conditions. British Journal of Health Psychology, 30(1). https://doi.org/10.1111/bjhp.12778

Yentzer, B. A., Wood, A., Sagransky, M. J., Jenna, Clark, A. R., Williams, L. A., & Feldman, S. R. (2011). An Internet-Based Survey and Improvement of Acne Treatment Outcomes. JAMA Dermatology , 147(10), 1223–1223. https://doi.org/10.1001/archdermatol.2011.277

Park, S. Y., Park, M. Y., Suh, D. H., Kwon, H. H., Min, S., Lee, S. J., Lee, W. J., Lee, M. W., Ahn, H. H., Kang, H., Lee, J. B., Ro, Y. S., Ahn, K. J., Kim, M. N., Kim, K. J., & Kim, N. I. (2015). Cross-sectional survey of awareness and behavioral pattern regarding acne and acne scar based on smartphone application. International Journal of Dermatology, 55(6), 645–652. https://doi.org/10.1111/ijd.12853

Rendon, M. I., Rodriguez, D. A., Kawata, A. K., Degboe, A. N., Wilcox, T. K., Burk, C. T., Daniels, S. R., & Roberts, W. E. (2015). Acne treatment patterns, expectations, and satisfaction among adult females of different races/ethnicities. Clinical, Cosmetic and Investigational Dermatology, 8, 231–238. https://doi.org/10.2147/CCID.S80467

Mastrolonardo, M., Bonamonte, D., Karlis, X., Fortunato, F., Mazzarella, F., Romita, P., & Foti, C. (2017). Acne and cosmetics: a cross-sectional, web-based questionnaire survey of the views and opinions of Italian dermatologists on the use of camouflage cosmetics in female patients. Giornale Italiano Di Dermatologia E Venereologia : Organo Ufficiale, Societa Italiana Di Dermatologia E Sifilografia, 152(5), 407–412. https://doi.org/10.23736/S0392-0488.16.05291-3

Hung, C., Chen, Y., Hung, T.-L., Chiang, C., Chen, C.-Y., & Wang, W. (2022). Clinician-created educational video for shared decision-making in the outpatient management of acne. PLOS ONE, 17(7), e0271100–e0271100. https://doi.org/10.1371/journal.pone.0271100

Nykamp, D., Marshall, L. L., & Ashworth, L. (2008). An Active-Learning Assignment Using Nonprescription Medicines. American Journal of Pharmaceutical Education, 72(1), 20. https://doi.org/10.5688/aj720120

Appendix

Full search query: ("acne"[Title/Abstract] OR "acne vulgaris"[MeSH Terms]) AND ("artificial intelligence"[MeSH Terms] OR "AI"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "neural network"[Title/Abstract] OR "neural networks"[Title/Abstract] OR "chatbot"[Title/Abstract] OR "chatbots"[Title/Abstract] OR "virtual reality"[Title/Abstract] OR "VR"[Title/Abstract] OR "mobile"[Title/Abstract] OR "smartphone"[Title/Abstract] OR "mobile application"[Title/Abstract] OR "mHealth"[Title/Abstract] OR "computer-guided"[Title/Abstract] OR "web-based"[Title/Abstract]) AND ("treatment"[Title/Abstract] OR "therapy"[Title/Abstract] OR "management"[Title/Abstract] OR "compliance"[Title/Abstract] OR "adherence"[Title/Abstract] OR "monitor"[Title/Abstract] OR "monitoring"[Title/Abstract] OR "prediction"[Title/Abstract] OR "remission"[Title/Abstract] OR "prognosis"[Title/Abstract])

Downloads

Posted

2025-09-21

Categories