Preprint / Version 1

Designing a prime editing guide to target the rs1190870 SNP associated with the development of adolescent idiopathic scoliosis in East Asian populations

##article.authors##

  • Evana Jang Miss Porter's School

DOI:

https://doi.org/10.58445/rars.3091

Keywords:

Adolescent Idiopathic Scoliosis, Ladybird Homeobox 1, East Asian Populations, Crispr Prime Editing, Adeno-associated Virus, Single-nucleotide Polymorphisms

Abstract

Several studies have reported the association of the Ladybird Homeobox 1 (LBX1) gene with the development of adolescent idiopathic scoliosis (AIS) in East Asian populations. AIS is a type of scoliosis that develops in adolescents with no definite cause and leads to spinal discomfort and complications. Within the regulatory regions of LBX1, there are single-nucleotide polymorphisms (SNPs) that are linked to susceptibility to AIS, specifically if an individual inherits what is deemed the risk allele. This paper discusses three SNPs that are linked to AIS within the East Asian population: rs11190870, rs678741, and rs625039. We then dive into the most highly associated SNP – rs11190870 – and design a prime editing guide utilizing the PegFinder website to edit the risk allele T to the non-risk allele A. This paper then discusses the optimal way to deliver the CRISPR complex in vivo, through an adeno-associated virus (AAV) directly into skeletal muscle cells. Our study proposes a CRISPR guide to replace a well-studied risk allele, potentially reducing the risk of developing scoliosis, utilizing cutting-edge gene technology that may benefit families with a history of scoliosis.

References

American Association of Neurological Surgeons, “Scoliosis.” Apr. 30, 2024. [Online]. Available: https://www.aans.org/patients/conditions-treatments/scoliosis/

Cleveland Clinic, “Scoliosis.” The Cleveland Clinic Foundation, Jan. 26, 2024.

F. Di Maria et al., “Immediate Effects of Sforzesco® Bracing on Respiratory Function in

Adolescents with Idiopathic Scoliosis,” Healthcare, vol. 9, no. 10, p. 1372, Oct. 2021, doi: 10.3390/healthcare9101372.

H.-R. Weiss and D. Goodall, “Rate of complications in scoliosis surgery – a systematic review of the Pub Med literature,” Scoliosis, vol. 3, no. 1, p. 9, Dec. 2008, doi: 10.1186/1748-7161-3-9.

F. Altaf, A. Gibson, Z. Dannawi, and H. Noordeen, “Adolescent idiopathic scoliosis,” BMJ, vol. 346, no. apr30 1, pp. f2508–f2508, Apr. 2013, doi: 10.1136/bmj.f2508.

J. A. Janicki and B. Alman, “Scoliosis: Review of diagnosis and treatment,” Paediatr. Child Health, vol. 12, no. 9, pp. 771–776, Nov. 2007, doi: 10.1093/pch/12.9.771.

M. R. Konieczny, H. Senyurt, and R. Krauspe, “Epidemiology of adolescent idiopathic scoliosis,” J. Child. Orthop., vol. 7, no. 1, pp. 3–9, Feb. 2013, doi: 10.1007/s11832-012-0457-4. [8] H. Guo et al., “Ethnic Disparity in the Incidence of Scoliosis Among Adolescents in Tianzhu Tibetan Autonomous County, China,” Front. Public Health, vol. 10, p. 791550, Apr. 2022, doi: 10.3389/fpubh.2022.791550.

H. Modi, S. Srinivasalu, S. Smehta, J.-H. Yang, H.-R. Song, and S. W. Suh, “Muscle imbalance in volleyball players initiates scoliosis in immature spines: a screening analysis,” Asian Spine J., vol. 2, no. 1, pp. 38–43, June 2008, doi: 10.4184/asj.2008.2.1.38.

N. S. Yan, “‘Butterfly Queen’ Zhang Yufei: Olympic Champion Battling Scoliosis Source URL : ‘Butterfly Queen’ Zhang Yufei: Olympic Champion Battling Scoliosis | The Standard https://www.thestandard.com.hk/health-and-wellness/article/66415/,” The Standard, Sept. 24, 2024. [Online]. Available: https://www.thestandard.com.hk/health-and-wellness/article/66415/ Butterfly-Queen-Zhang-Yufei-Olympic-Champion-Battling-Scoliosis

A. Grauers, I. Rahman, and P. Gerdhem, “Heritability of scoliosis,” Eur. Spine J., vol. 21, no. 6, pp. 1069–1074, June 2012, doi: 10.1007/s00586-011-2074-1.

Y. Wang et al., “Role of differentially expressed LBX1 in Adolescent Idiopathic Scoliosis (AIS) paraspinal muscle phenotypes and muscle-bone crosstalk through modulating myoblasts,” in Studies in Health Technology and Informatics, X.-C. Liu and J. G. Thometz, Eds., IOS Press, 2021. doi: 10.3233/SHTI210425.

S. Watanabe, S. Kondo, M. Hayasaka, and K. Hanaoka, “Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle,” J. Cell Sci., vol. 120, no. 23, pp. 4178–4187, Dec. 2007, doi: 10.1242/jcs.011668.

H. Brohmann, K. Jagla, and C. Birchmeier, “The role of Lbx1 in migration of muscle precursor cells,” Development, vol. 127, no. 2, pp. 437–445, Jan. 2000, doi: 10.1242/ dev.127.2.437.

K. Cui et al., “Genetic identification of medullary neurons underlying congenital hypoventilation,” Sci. Adv., vol. 10, no. 25, p. eadj0720, June 2024, doi: 10.1126/ sciadv.adj0720.

L. Xu et al., “A Functional SNP in the Promoter of LBX1 Is Associated With the Development of Adolescent Idiopathic Scoliosis Through Involvement in the Myogenesis of

Paraspinal Muscles,” Front. Cell Dev. Biol., vol. 9, p. 777890, Nov. 2021, doi: 10.3389/ fcell.2021.777890.

H. Jiang et al., “Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population,” Eur. Spine J., vol. 22, no. 2, pp. 282–286, Feb. 2013, doi: 10.1007/s00586-012-2532-4.

Y. Cao, J. Min, Q. Zhang, H. Li, and H. Li, “Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: a meta-analysis based on 34,626 subjects,” BMC Musculoskelet. Disord., vol. 17, p. 309, July 2016, doi: 10.1186/s12891-016-1139-z.

L. Dai, Y. Deng, N. Li, L. Xie, M. Mao, and J. Zhu, “Discontinuous microduplications at chromosome 10q24.31 identified in a Chinese family with split hand and foot malformation,” BMC Med. Genet., vol. 14, no. 1, p. 45, Dec. 2013, doi: 10.1186/1471-2350-14-45.

L. P. Bignold, “The cell-type-specificity of inherited predispositions to tumours: review and hypothesis,” Cancer Lett., vol. 216, no. 2, pp. 127–146, Dec. 2004, doi: 10.1016/ j.canlet.2004.07.037.

L. Guo et al., “Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation,” PLOS Genet., vol. 12, no. 1, p. e1005802, Jan. 2016, doi: 10.1371/journal.pgen.1005802.

D. Mercatelli, L. Scalambra, L. Triboli, F. Ray, and F. M. Giorgi, “Gene regulatory network inference resources: A practical overview,” Biochim. Biophys. Acta BBA - Gene Regul. Mech., vol. 1863, no. 6, p. 194430, June 2020, doi: 10.1016/j.bbagrm.2019.194430.

M. Luo, Y. Zhang, S. Huang, and Y. Song, “The Susceptibility and Potential Functions of the LBX1 Gene in Adolescent Idiopathic Scoliosis,” Front. Genet., vol. 11, p. 614984, Jan. 2021, doi: 10.3389/fgene.2020.614984.

M. Asmamaw and B. Zawdie, “Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing,” Biol. Targets Ther., vol. Volume 15, pp. 353–361, Aug. 2021, doi: 10.2147/ BTT.S326422.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science, vol. 337, no. 6096, pp. 816–821, Aug. 2012, doi: 10.1126/science.1225829.

C. A. Lino, J. C. Harper, J. P. Carney, and J. A. Timlin, “Delivering CRISPR: a review of the challenges and approaches,” Drug Deliv., vol. 25, no. 1, pp. 1234–1257, Jan. 2018, doi: 10.1080/10717544.2018.1474964.

A. Ochoa-Sanchez et al., “Prime Editing, a Novel Genome-Editing Tool That May Surpass Conventional CRISPR-Cas9,” ReGEN Open, vol. 1, no. 1, pp. 75–82, June 2021, doi: 10.1089/ regen.2021.0016.

M. Uhlén et al., “Tissue-based map of the human proteome,” Science, vol. 347, no. 6220, p. 1260419, Jan. 2015, doi: 10.1126/science.1260419.

M. Cerezo et al., “The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity,” Nucleic Acids Res., vol. 53, no. D1, pp. D998–D1005, Jan. 2025, doi: 10.1093/ nar/gkae1070.

G. Perez et al., “The UCSC Genome Browser database: 2025 update,” Nucleic Acids Res., vol. 53, no. D1, pp. D1243–D1249, Jan. 2025, doi: 10.1093/nar/gkae974.

J. L. Doman, A. A. Sousa, P. B. Randolph, P. J. Chen, and D. R. Liu, “Designing and executing prime editing experiments in mammalian cells,” Nat. Protoc., vol. 17, no. 11, pp. 2431–2468, Nov. 2022, doi: 10.1038/s41596-022-00724-4.

R. D. Chow, J. S. Chen, J. Shen, and S. Chen, “A web tool for the design of prime-editing guide RNAs,” Nat. Biomed. Eng., vol. 5, no. 2, pp. 190–194, Sept. 2020, doi: 10.1038/ s41551-020-00622-8.

I. Kou et al., “Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese,” Nat. Commun., vol. 10, no. 1, p. 3685, Aug. 2019, doi: 10.1038/s41467-019-11596-w.

Z. Zhu et al., “Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls,” Nat. Commun., vol. 6, no. 1, p. 8355, Sept. 2015, doi: 10.1038/ncomms9355.

Z. Zhao, P. Shang, P. Mohanraju, and N. Geijsen, “Prime editing: advances and therapeutic applications,” Trends Biotechnol., vol. 41, no. 8, pp. 1000–1012, Aug. 2023, doi: 10.1016/j.tibtech.2023.03.004.

D. P. Santos, E. Kiskinis, K. Eggan, and F. T. Merkle, “Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells,” Curr. Protoc. Stem Cell Biol., vol. 38, p. 5B.6.1-5B.6.60, Aug. 2016, doi: 10.1002/cpsc.15.

S. G. Coetzee, S. Pierce, P. Brundin, L. Brundin, D. J. Hazelett, and G. A. Coetzee, “Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson’s disease etiology,” Sci. Rep., vol. 6, no. 1, p. 30509, July 2016, doi: 10.1038/srep30509.

T. Cheng, E. Einarsdottir, J. Kere, and P. Gerdhem, “Idiopathic scoliosis: a systematic review and meta-analysis of heritability,” EFORT Open Rev., vol. 7, no. 6, pp. 414–421, June 2022, doi: 10.1530/EOR-22-0026.

A. Singh, H. Irfan, E. Fatima, Z. Nazir, A. Verma, and A. Akilimali, “Revolutionary breakthrough: FDA approves CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell disease,” Ann. Med. Surg., vol. 86, no. 8, pp. 4555–4559, Aug. 2024, doi: 10.1097/ MS9.0000000000002146.

E. M. Porto, A. C. Komor, I. M. Slaymaker, and G. W. Yeo, “Base editing: advances and therapeutic opportunities,” Nat. Rev. Drug Discov., vol. 19, no. 12, pp. 839–859, Dec. 2020, doi: 10.1038/s41573-020-0084-6.

H. A. Rees and D. R. Liu, “Base editing: precision chemistry on the genome and transcriptome of living cells,” Nat. Rev. Genet., vol. 19, no. 12, pp. 770–788, Dec. 2018, doi: 10.1038/s41576-018-0059-1.

W. Jennings et al., “Paraspinal muscle ladybird homeobox 1 (LBX1) in adolescent idiopathic scoliosis: a cross-sectional study,” Spine J., vol. 19, no. 12, pp. 1911–1916, Dec. 2019, doi: 10.1016/j.spinee.2019.06.014.

A. Plaza Reyes and F. Lanner, “Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos,” Development, vol. 144, no. 1, pp. 3–7, Jan. 2017, doi: 10.1242/dev.139683.

R. Roberts, “CRISPR Delivery Methods: Cargo, Vehicles, and Challenges,” Synthego, July 2025, [Online]. Available: https://www.synthego.com/blog/delivery-crispr-cas9

S. Demirci, K. Essawi, P. Germino-Watnick, X. Liu, W. Hakami, and J. F. Tisdale, “Advances in CRISPR Delivery Methods: Perspectives and Challenges,” CRISPR J., vol. 5, no. 5, pp. 660–676, Oct. 2022, doi: 10.1089/crispr.2022.0051.

E. Ivanova, “How Various Drug Delivery Methods Could Aid in the Translation of Genome Prime Editing Technologies,” Genet. Res., vol. 2022, p. 7301825, 2022, doi: 10.1155/2022/7301825.

M. Tabebordbar et al., “In vivo gene editing in dystrophic mouse muscle and muscle stem cells,” Science, vol. 351, no. 6271, pp. 407–411, Jan. 2016, doi: 10.1126/science.aad5177.

J. Kaiser, “Seeking the Cause of Induced Leukemias in X-SCID Trial,” Science, vol. 299, no. 5606, pp. 495–495, Jan. 2003, doi: 10.1126/science.299.5606.495.

Downloads

Posted

2025-09-21

Categories