Coping with Climate Change: Evaluating the Plastic Responses of Brittle Stars to Ocean Acidification and Warming
DOI:
https://doi.org/10.58445/rars.3007Keywords:
brittle star, ocean acidification, ocean warming, global warming, acclimationAbstract
Beginning in the Industrial Revolution, increasing levels of carbon dioxide produced by human activity have been absorbed into the ocean, lowering its pH, in a process called ocean acidification (OA). OA has been shown to have negative effects on the growth, development, and survival rates of a multitude of marine organisms, most notably calcifiers, which are organisms that make and use calcium carbonate to form their shells or skeletons. Ocean warming (OW), the global increase in water temperature, is occurring simultaneously. Thus, it is necessary to study the combined impact that OA and OW has on marine organisms. Studies have examined the effects of OA and OW on marine species with aquacultural importance, while research on other organisms, such as echinoderms, is less prevalent. This project will explore the pre-existing abilities of brittle stars, a type of echinoderm, to plasticly respond to OA and OW on short time scales. The potential for marine organisms to acclimate to near-future water conditions will be important to consider as we work to reduce the impact of climate change on marine environments.
References
Azcárate-García, T., Avila, C., & Figuerola, B. (2024). Skeletal Mg content in common echinoderm species from Deception and Livingston Islands (South Shetland Islands, Antarctica) in the context of global change. Marine Pollution Bulletin, 199, 115956. https://doi.org/https://doi.org/10.1016/j.marpolbul.2023.115956
Chan, K. Y. K., Grünbaum, D., Arnberg, M., & Dupont, S. (2016). Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES Journal of Marine Science, 73(3), 951-961. https://doi.org/10.1093/icesjms/fsv073
Christensen, A. B., Nguyen, H. D., & Byrne, M. (2011). Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: Inferences for survivorship in a changing ocean [Article]. Journal of Experimental Marine Biology and Ecology, 403(1-2), 31-38. https://doi.org/10.1016/j.jembe.2011.04.002
Christensen, A. B., Radivojevich, K. O., & Pyne, M. I. (2017). Effects of CO2, pH and temperature on respiration and regeneration in the burrowing brittle stars Hemipholis cordifera and Microphiopholis gracillima. Journal of Experimental Marine Biology and Ecology, 495, 13-23. https://doi.org/https://doi.org/10.1016/j.jembe.2017.05.012
Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean Acidification: The Other CO2 Problem. Annual Review of Marine Science, 1(Volume 1, 2009), 169-192. https://doi.org/https://doi.org/10.1146/annurev.marine.010908.163834
Dubois, P. (2014). The Skeleton of Postmetamorphic Echinoderms in a Changing World. The Biological Bulletin, 226(3), 223-236. https://doi.org/10.1086/BBLv226n3p223
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., & Thorndyke, M. (2008). Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 373, 285-294. https://doi.org/10.3354/meps07800
Dupont, S., Ortega-Martínez, O., & Thorndyke, M. (2010). Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 19(3), 449-462. https://doi.org/10.1007/s10646-010-0463-6
Harvey, B. P., Gwynn-Jones, D., & Moore, P. J. (2013). Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution, 3(4), 1016-1030. https://doi.org/https://doi.org/10.1002/ece3.516
Hu, M. Y., Casties, I., Stumpp, M., Ortega-Martinez, O., & Dupont, S. (2014). Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. Journal of Experimental Biology, 217(13), 2411-2421. https://doi.org/10.1242/jeb.100024
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Organo Quintana, C., & Banta, G. (2012). What is bioturbation? Need for a precise definition for fauna in aquatic science. Marine Ecology Progress Series, 446, 285-302. https://doi.org/10.3354/meps09506
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,…Gattuso, J. P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol, 19(6), 1884-1896. https://doi.org/10.1111/gcb.12179
Lang, B. J., Donelson, J. M., Bairos-Novak, K. R., Wheeler, C. R., Caballes, C. F., Uthicke, S., & Pratchett, M. S. (2023). Impacts of ocean warming on echinoderms: A meta-analysis [Review]. Ecology and Evolution, 13(8), Article e10307. https://doi.org/10.1002/ece3.10307
Leung, J. Y. S., Zhang, S., & Connell, S. D. (2022). Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. Small, 18(35), 2107407. https://doi.org/https://doi.org/10.1002/smll.202107407
Liao, X., Li, X., Mou, A., Zhang, Q., Dong, Y., Li, Y.,…Xu, Q. (2025). Thermal acclimatization mechanisms in the cold-water Ophiuroid Ophiura sarsii vadicola: Regulation of protein homeostasis and metabolic pathways. Journal of Thermal Biology, 130, 104137. https://doi.org/https://doi.org/10.1016/j.jtherbio.2025.104137
McClintock, J. B., Amsler, M. O., Angus, R. A., Challener, R. C., Schram, J. B., Amsler, C. D.,…Baker, B. J. (2011). The Mg-Calcite Composition of Antarctic Echinoderms: Important Implications for Predicting the Impacts of Ocean Acidification. The Journal of Geology, 119(5), 457-466. https://doi.org/10.1086/660890
Márquez-Borrás, F., & Sewell, M. A. (2024). Long-term study of the combined effects of ocean acidification and warming on the mottled brittle star, Ophionereis fasciata [Article]. Journal of Experimental Biology, 227(21), Article jeb249426. https://doi.org/10.1242/jeb.249426
Méndez, C., Simpson, N., Johnson, F., & Birt, A. (2023). Climate Change 2023: Synthesis Report (Full Volume) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647
Peck, L., Massey, A., Thorne, M., & Clark, M. (2009). Lack of acclimation in Ophionotus victoriae: Brittle stars are not fish. Polar Biology, 32, 399-402. https://doi.org/10.1007/s00300-008-0532-y
Wood, H. L., Spicer, J. I., Kendall, M. A., Lowe, D. M., & Widdicombe, S. (2011). Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biology, 34(7), 1033-1044. https://doi.org/10.1007/s00300-011-0963-8
Wood, H. L., Spicer, J. I., & Widdicombe, S. (2008). Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1767-1773. https://doi.org/10.1098/rspb.2008.0343
Downloads
Posted
Categories
License
Copyright (c) 2025 Olivia Huang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.