Preprint / Version 1

Pumped Up: A Review of Adrenaline and the Heart

##article.authors##

  • Rishabh Chakraborty Ridge High School

DOI:

https://doi.org/10.58445/rars.2905

Keywords:

Adrenaline, Funny Current, Fight-or-Flight, Electrophysiology, Calcium Channels, Cardiac Muscle

Abstract

The fight-or-flight response is commonly seen as an animal’s immediate response to danger, causing a wide variety of physiological changes. Cardiac muscles contract more forcefully and quickly in the fight-or-flight response, and the mechanisms responsible for this shift in response mostly involve ion channels and electrical impulses in the heart. This paper will review these electrical mechanisms, primarily caused by adrenaline's effect on calcium ion channels, preexisting cardiac rhythms, and cardiac muscle tissue itself. A basic history of research involving said effects to better understand the interactions between adrenaline, calcium ion channels, and the cardiac muscles. This history includes the discovery of the funny current, advancements in understanding adrenaline's effects on the heart, and the expanding knowledge of adrenaline's molecular pathway in cardiac tissue. This review will also detail several medical applications of this understanding, including in cases of atrial fibrillation and genetic arrhythmias, and explore treatments such as beta-blockers or Ivabradine that relate to adrenaline's molecular pathway. Further research in this field that involves the molecular interaction of adrenaline with other pathways within cardiac muscle will be explored as well, hopefully to the benefit of those who suffer from cardiac disease. Ultimately, this review aims to analyze the applications of this research, its medical implications, and current research in the field of adrenaline to further our understanding of the cardiac fight-or-flight response.

References

Catterall WA. Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response. Curr Mol Pharmacol. 2015;8(1):12-21. doi:10.2174/1874467208666150507103417

Peters CH, Rickert C, Morotti S, et al. The funny current If is essential for the fight-or-flight response in cardiac pacemaker cells. J Gen Physiol. 2022;154(12):e202213193. doi:10.1085/jgp.202213193

Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA. Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal. 2010;3(141):ra70. doi:10.1126/scisignal.2001152

Chae SW, Wang DY, Gong QY, Lee CO. Effect of norepinephrine on Na(+)-K+ pump and Na+ influx in sheep cardiac Purkinje fibers. Am J Physiol-Cell Physiol. Published online April 1, 1990. doi:10.1152/ajpcell.1990.258.4.C713

Dalal R, Grujic D. Epinephrine. In: StatPearls. StatPearls Publishing; 2025. Accessed June 27, 2025. http://www.ncbi.nlm.nih.gov/books/NBK482160/

Brown HF, Difrancesco D, Noble SJ. How does adrenaline accelerate the heart? Nature. 1979;280(5719):235-236. doi:10.1038/280235a0

Liu G, Papa A, Katchman AN, et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature. 2020;577(7792):695-700. doi:10.1038/s41586-020-1947-z

DiFrancesco D. A Brief History of Pacemaking. Front Physiol. 2019;10:1599. doi:10.3389/fphys.2019.01599

Bucchi A, Barbuti A, Difrancesco D, Baruscotti M. Funny Current and Cardiac Rhythm: Insights from HCN Knockout and Transgenic Mouse Models. Front Physiol. 2012;3:240. doi:10.3389/fphys.2012.00240

Kashou AH, Basit H, Chhabra L. Physiology, Sinoatrial Node. In: StatPearls. StatPearls Publishing; 2025. Accessed June 27, 2025. http://www.ncbi.nlm.nih.gov/books/NBK459238/

Bartos DC, Grandi E, Ripplinger CM. Ion Channels in the Heart. Compr Physiol. 2015;5(3):1423-1464. doi:10.1002/cphy.c140069

Hanna P, Rajendran PS, Ajijola OA, et al. Cardiac neuroanatomy - Imaging nerves to define functional control. Auton Neurosci Basic Clin. 2017;207:48-58. doi:10.1016/j.autneu.2017.07.008

Charkoudian N, Rabbitts JA. Sympathetic Neural Mechanisms in Human Cardiovascular Health and Disease. Mayo Clin Proc. 2009;84(9):822-830.

Snutch TP, Peloquin J, Mathews E, McRory JE. Molecular Properties of Voltage-Gated Calcium Channels. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience; 2013. Accessed February 28, 2025. https://www.ncbi.nlm.nih.gov/books/NBK6181/

Paul MS, Limaiem F. Histology, Purkinje Cells. In: StatPearls. StatPearls Publishing; 2025. Accessed June 13, 2025. http://www.ncbi.nlm.nih.gov/books/NBK545154/

DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981;314:359-376.

Beresewicz A, Reuter H. The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under “rested-state” and “steady-state” stimulation. Naunyn Schmiedebergs Arch Pharmacol. 1977;301(2):99-107. doi:10.1007/BF00501423

The Myosin Cross-Bridge Cycle. The Biophysical Society. Accessed May 25, 2025. https://www.biophysics.org/blog/the-myosin-cross-bridge-cycle

Hoh JF, Rossmanith GH, Kwan LJ, Hamilton AM. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res. 1988;62(3):452-461. doi:10.1161/01.res.62.3.452

Ju YK, Allen DG. How does β-adrenergic stimulation increase the heart rate? The role of intracellular Ca2+ release in amphibian pacemaker cells. J Physiol. 1999;516(Pt 3):793-804. doi:10.1111/j.1469-7793.1999.0793u.x

Protein Kinase A. Accessed May 31, 2025. https://vivo.colostate.edu/hbooks/pathphys/topics/pka.html

Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy | Circulation Research. Accessed May 31, 2025. https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.123.322729

Hulme JT, Lin TWC, Westenbroek RE, Scheuer T, Catterall WA. β-Adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci. 2003;100(22):13093-13098. doi:10.1073/pnas.2135335100

Nesheiwat Z, Goyal A, Jagtap M. Atrial Fibrillation. In: StatPearls. StatPearls Publishing; 2025. Accessed June 19, 2025. http://www.ncbi.nlm.nih.gov/books/NBK526072/

Shusterman V, Lampert R. Role of Stress in Cardiac Arrhythmias. J Atr Fibrillation. 2013;5(6):834. doi:10.4022/jafib.834

Chu B, Marwaha K, Sanvictores T, Awosika AO, Ayers D. Physiology, Stress Reaction. In: StatPearls. StatPearls Publishing; 2025. Accessed June 20, 2025. http://www.ncbi.nlm.nih.gov/books/NBK541120/

Coumel P, Escoubet B, Attuel P. Beta-blocking therapy in atrial and ventricular tachyarrhythmias: Experience with nadolol. Am Heart J. 1984;108(4, Part 2):1098-1108. doi:10.1016/0002-8703(84)90589-1

Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited: A critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291-1301. doi:10.1016/j.neubiorev.2011.02.003

Tucker WD, Sankar P, Theetha Kariyanna P. Selective Beta-1 Blockers. In: StatPearls. StatPearls Publishing; 2025. Accessed June 17, 2025. http://www.ncbi.nlm.nih.gov/books/NBK499982/

Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. Inherited cardiac arrhythmias. Nat Rev Dis Primer. 2020;6(1):58. doi:10.1038/s41572-020-0188-7

Schwartz PJ, Crotti L, Insolia R. Long-QT Syndrome. Circ Arrhythm Electrophysiol. 2012;5(4):868-877. doi:10.1161/CIRCEP.111.962019

Brodie OT, Michowitz Y, Belhassen B. Pharmacological Therapy in Brugada Syndrome. Arrhythmia Electrophysiol Rev. 2018;7(2):135-142. doi:10.15420/aer.2018.21.2

Niimi N, Yuki K, Zaleski K. Long QT Syndrome and Perioperative Torsades de Pointes: What the Anesthesiologist Should Know. J Cardiothorac Vasc Anesth. 2022;36(1):286-302. doi:10.1053/j.jvca.2020.12.011

Roden DM. Torsade de pointes. Clin Cardiol. 1993;16(9):683-686. doi:10.1002/clc.4960160910

Wołowiec Ł, Grześk G, Osiak J, et al. Beta-blockers in cardiac arrhythmias–Clinical pharmacologist’s point of view. Front Pharmacol. 2023;13:1043714. doi:10.3389/fphar.2022.1043714

Iliuta L, Rac-Albu M. Ivabradine Versus Beta-Blockers in Patients with Conduction Abnormalities or Left Ventricular Dysfunction Undergoing Cardiac Surgery. Cardiol Ther. 2014;3(1-2):13-26. doi:10.1007/s40119-013-0024-1

Sulfi S, Timmis A. Ivabradine – the first selective sinus node If channel inhibitor in the treatment of stable angina. Int J Clin Pract. 2006;60(2):222-228. doi:10.1111/j.1742-1241.2006.00817.x

Shahjehan RD, Sharma S, Bhutta BS. Coronary Artery Disease. In: StatPearls. StatPearls Publishing; 2025. Accessed June 21, 2025. http://www.ncbi.nlm.nih.gov/books/NBK564304/

Tse S, Mazzola N. Ivabradine (Corlanor) for Heart Failure: The First Selective and Specific If Inhibitor. Pharm Ther. 2015;40(12):810-814.

DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs. 2004;64(16):1757-1765. doi:10.2165/00003495-200464160-00003

Hermiz C, Sedhai YR. Angina. In: StatPearls. StatPearls Publishing; 2025. Accessed June 21, 2025. http://www.ncbi.nlm.nih.gov/books/NBK557672/

King GS, Goyal A, Grigorova Y, Patel P, Hashmi MF. Antiarrhythmic Medications. In: StatPearls. StatPearls Publishing; 2025. Accessed June 25, 2025. http://www.ncbi.nlm.nih.gov/books/NBK482322/

Ohnuki Y, Suita K, Ishikawa M, et al. Epac1 increases myosin regulatory light-chain phosphorylation, energetic cost of contraction, and susceptibility to heart failure. PLOS One. 2025;20(6):e0325986. doi:10.1371/journal.pone.0325986

Toepfer C, Caorsi V, Kampourakis T, et al. Myosin Regulatory Light Chain (RLC) Phosphorylation Change as a Modulator of Cardiac Muscle Contraction in Disease. J Biol Chem. 2013;288(19):13446-13454. doi:10.1074/jbc.M113.455444

Heart Rhythm 2025 Features Advances in AI that Enhance Safety of Atrial Fibrillation Treatment - HRS. https://www.hrsonline.org/. Accessed June 26, 2025. https://www.hrsonline.org/news/hr2025-features-advanced-ai-safety-afib-treatment/

Pallien T, Klussmann E. New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans. 2020;48(1):39-49. doi:10.1042/BST20190229

Khalil B, Rosani A, Warrington SJ. Physiology, Catecholamines. In: StatPearls. StatPearls Publishing; 2025. Accessed June 21, 2025. http://www.ncbi.nlm.nih.gov/books/NBK507716/

Downloads

Posted

2025-08-10

Categories