Preprint / Version 1

The Therapeutic Potential of Phloretin

Implications for Diabetic Nephropathy and Oxidative Stress Management

##article.authors##

  • Griffin Rick Laguna Blanca School

DOI:

https://doi.org/10.58445/rars.289

Keywords:

Diabetic Nephropathy, Diabetes, Oxidative Stress, GLUT2

Abstract

Diabetes mellitus affects a significant portion of the global population, with approximately 463 million individuals living with the condition worldwide. Among the various complications associated with diabetes, diabetic nephropathy, a progressive kidney disease, poses a considerable burden on affected individuals, as approximately 40% of people with diabetes develop this condition. 

Diabetic nephropathy, or diabetic kidney disease, impairs the kidneys' ability to filter blood, leading to symptoms like proteinuria and hypertension in its early stages. However, as the disease progresses, more severe complications such as chronic kidney disease (CKD) and end-stage renal disease (ESRD) may arise, necessitating dialysis or kidney transplantation. These complications can significantly impact a person's quality of life, causing fatigue, fluid retention, electrolyte imbalances, anemia, and an increased risk of cardiovascular problems. 

Oxidative stress plays a crucial role in the development of diabetic kidney disease, with hyperglycemia triggering an imbalance between reactive oxygen species (ROS) production and neutralization in the kidney. This results in cellular damage and inflammation within the renal tissue. 

Phloretin, a dihydrochalcone, has been studied for its potential to inhibit glucose transporter 2 (GLUT2) in cancerous tissues, preventing glucose absorption and metabolism. Beyond cancer cells, phloretin may also have physiological roles in the kidneys, such as mitigating glucose-induced ROS production and acting as an antioxidant by promoting the expression of antioxidant enzymes. Additionally, phloretin's chelation properties may help prevent complications related to heavy metal toxicity-induced diabetes mellitus, which contributes to diabetic nephropathy through oxidative stress. 

This paper explores the positive potential of phloretin therapy for kidney function while acknowledging potential short-term damage to the liver and pancreas. To address these concerns, the paper suggests two concepts: 1) a metformin-based phloretin treatment plan and 2) maximizing the localization of phloretin to the kidneys to minimize off-target effects.

References

Zhu T, Li K, Herrero P, Georgiou P. Deep Learning for Diabetes: A Systematic Review. IEEE Journal of Biomedical and Health Informatics. 2021;25(7):2744-2757. doi:https://doi.org/10.1109/jbhi.2020.3040225

Sheira G, Noreldin N, Tamer A, Saad M. Urinary biomarker N-acetyl-β-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. Journal of Diabetes & Metabolic Disorders. 2015;14(1). doi:https://doi.org/10.1186/s40200-015-0133-6

Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: A new perspective for a new era. Molecular Metabolism. 2019;30:250-263. doi:https://doi.org/10.1016/j.molmet.2019.10.005

Doria A. Genetics of Diabetes Complications. Current Diabetes Reports. 2010;10(6):467-475. doi:https://doi.org/10.1007/s11892-010-0147-x

Turkmen K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. International Urology and Nephrology. 2016;49(5):837-844. doi:https://doi.org/10.1007/s11255-016-1488-4

Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine. 2022;184:114-134. doi:https://doi.org/10.1016/j.freeradbiomed.2022.03.019

Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(9):2709-2729. doi:https://doi.org/10.1016/j.bbagen.2014.05.017

Wu C, Yuan Soon Ho, Chia Ti Tsai, et al. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Cancer. 2009;124(9):2210-2219. doi:https://doi.org/10.1002/ijc.24189

Hu H, Bai X, Xu K, Zhang C, Chen L. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers. 2021;100(8):101217-101217. doi:https://doi.org/10.1016/j.psj.2021.101217

Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology. 2009;7(1):65-74. doi:https://doi.org/10.2174/157015909787602823

Naudi A, Jove M, Ayala V, et al. Cellular Dysfunction in Diabetes as Maladaptive Response to Mitochondrial Oxidative Stress. Experimental Diabetes Research. 2012;2012:e696215. doi:https://doi.org/10.1155/2012/696215

Mokini Z, Marcovecchio ML, Chiarelli F. Molecular pathology of oxidative stress in diabetic angiopathy: Role of mitochondrial and cellular pathways. Diabetes Research and Clinical Practice. 2010;87(3):313-321. doi:https://doi.org/10.1016/j.diabres.2009.11.018

Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney International. 2017;92(5):1051-1057. doi:https://doi.org/10.1016/j.kint.2017.05.034

Mitra S, Chakraborty AJ, Tareq AM, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science. 2022;34(3):101865. doi:https://doi.org/10.1016/j.jksus.2022.101865

Cooper RG. Effect of tobacco smoking on renal function. 2006;124(3):261-268.

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2-3):65-87. doi:https://doi.org/10.1016/j.tox.2011.03.001

Dasika S. Glycolysis and TCA Cycle. ResearchGate. Published January 2007. https://www.researchgate.net/figure/Glycolysis-and-TCA-cycle-13_fig5_241825789

Turton N. Coenzyme Q 10 and the exclusive club of diseases that show a limited response to treatment. ResearchGate. Published May 2021. https://www.researchgate.net/figure/Diagram-of-electron-transport-chain-ETC-and-ATP-synthase-illustrating-the-pumping-of-H_fig2_351722900

Kanasaki K, Maeshima A, Taduri G, Revuelta I. Combating Kidney Fibrosis. BioMed Research International. 2014;2014:1-2. doi:https://doi.org/10.1155/2014/679154

Jankovic A, Korac A, Buzadzic B, et al. Redox implications in adipose tissue (dys)function—A new look at old acquaintances. Redox Biology. 2015;6:19-32. doi:https://doi.org/10.1016/j.redox.2015.06.018

Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Molecular Aspects of Medicine. 2020;71:100840. doi:https://doi.org/10.1016/j.mam.2019.100840

He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular Physiology and Biochemistry. 2017;44(2):532-553. doi:https://doi.org/10.1159/000485089

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. Published online March 30, 2020. doi:https://doi.org/10.1038/s41580-020-0230-3

Rask-Madsen C, King George L. Vascular Complications of Diabetes: Mechanisms of Injury and Protective Factors. Cell Metabolism. 2013;17(1):20-33. doi:https://doi.org/10.1016/j.cmet.2012.11.012

Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules. 2022;27(3):950. doi:https://doi.org/10.3390/molecules27030950

Hsu HH, Hoffmann S, Endlich N, et al. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. 2008;86(12):1379-1394. doi:https://doi.org/10.1007/s00109-008-0399-y

Suleiman HY, Roth R, Jain S, Heuser JE, Shaw AS, Miner JH. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight. 2017;2(16). doi:https://doi.org/10.1172/jci.insight.94137

Murray I. Normal Histology: Glomeruli - Interstitium - Tubules - Vessels . Kidney Pathology. Published October 12, 2006. https://kidneypathology.com/English_version/Glomeruli_histology.html

Hu C, Sun L, Xiao L, et al. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Current Medicinal Chemistry. 2015;22(24):2858-2870. doi:https://doi.org/10.2174/0929867322666150625095407

Jourde-Chiche N, Fakhouri F, Dou L, et al. Endothelium structure and function in kidney health and disease. Nature Reviews Nephrology. 2019;15(2):87-108. doi:https://doi.org/10.1038/s41581-018-0098-z

Marchand M, Monnot C, Muller L, Germain S. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Seminars in Cell & Developmental Biology. 2019;89:147-156. doi:https://doi.org/10.1016/j.semcdb.2018.08.007

Karamanos NK, Theocharis AD. Matrix modeling and remodeling: A biological interplay regulating tissue homeostasis and diseases. Matrix Biology. 2019;75-76:1-11. doi:https://doi.org/10.1016/j.matbio.2018.08.007

Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced Oxidative Stress and its Role in Diabetes Mellitus Related Cardiovascular Diseases. Current Pharmaceutical Design. 2013;19(32):5695-5703. doi:https://doi.org/10.2174/1381612811319320005

Pandolfi A, De EA. Chronic hyperglycemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications. Genes & Nutrition. 2007;2(2):195-208. doi:https://doi.org/10.1007/s12263-007-0050-5

C. Adam Kirton, Loutzenhiser R. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity. American Journal of Physiology. 1998;275(2):H467-H475. doi:https://doi.org/10.1152/ajpheart.1998.275.2.h467

Gschwend SK. Small Artery Tone under Control of the Endothelium: On the Importance of EDHF and Myogenic Tone in Organ (Dys)Function. University of Gronigen; 2003. https://pure.rug.nl/ws/portalfiles/portal/3024541/thesis.pdf

Sasson AN. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World Journal of Diabetes. 2012;3(1):1. doi:https://doi.org/10.4239/wjd.v3.i1.1

Liamis G. Diabetes mellitus and electrolyte disorders. World Journal of Clinical Cases. 2014;2(10):488. doi:https://doi.org/10.12998/wjcc.v2.i10.488

Jha JC, Gray SP, Barit D, et al. Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy. Journal of the American Society of Nephrology. 2014;25(6):1237-1254. doi:https://doi.org/10.1681/asn.2013070810

Vallon V. Glucose transporters in the kidney in health and disease. Pflügers Archiv - European Journal of Physiology. 2020;472(9):1345-1370. doi:https://doi.org/10.1007/s00424-020-02361-w

Eaton DC. Vander’s Renal Physiology. Mcgraw-Hill Medical; 2018.

Sasaki T, Tsuboi N, Haruhara K, et al. Bowman Capsule Volume and Related Factors in Adults With Normal Renal Function. Kidney International Reports. 2018;3(2):314-320. doi:https://doi.org/10.1016/j.ekir.2017.10.007

Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Medicine. 2010;27(2):136-142. doi:https://doi.org/10.1111/j.1464-5491.2009.02894.x

Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews Nephrology. 2020;16(6):317-336. doi:https://doi.org/10.1038/s41581-020-0256-y

Bjornstad P, Greasley PJ, Wheeler DC, et al. The Potential Roles of Osmotic and Nonosmotic Sodium Handling in Mediating the Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Heart Failure. Journal of Cardiac Failure. 2021;27(12):1447-1455. doi:https://doi.org/10.1016/j.cardfail.2021.07.003

Arnold R, Issar T, Krishnan AV, Pussell BA. Neurological complications in chronic kidney disease. JRSM Cardiovascular Disease. 2016;5(5):204800401667768. doi:https://doi.org/10.1177/2048004016677687

R. Brouns. Neurological complications in renal failure: a review. Clinical Neurology and Neurosurgery. 2004;107(1):1-16. doi:https://doi.org/10.1016/j.clineuro.2004.07.012

Hytti M, Ruuth J, Kanerva Ii, et al. Phloretin inhibits glucose transport and reduces inflammation in human retinal pigment epithelial cells. Molecular and Cellular Biochemistry. 2022;478(1):215-227. doi:https://doi.org/10.1007/s11010-022-04504-2

Choi B. Biochemical Basis of Anti-Cancer-Effects of Phloretin—A Natural Dihydrochalcone. Molecules. 2019;24(2):278. doi:https://doi.org/10.3390/molecules24020278

Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. Journal of Nutrition & Food Sciences. 2018;08. doi:https://doi.org/10.4172/2155-9600-c1-054

Shriwas P, Roberts D, Li Y, et al. A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer & Metabolism. 2021;9(1). doi:https://doi.org/10.1186/s40170-021-00248-7

Cheon D, Kim J, Shin HC, Kim Y. Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Molecules. 2019;24(7):1319. doi:https://doi.org/10.3390/molecules24071319

Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L, Nabavi SM. Health effects of phloretin: from chemistry to medicine. Phytochemistry Reviews. 2017;16(3):527-533. doi:https://doi.org/10.1007/s11101-017-9500-x

Anand V, Ramachandran Vinyagam, Vinothkumar Rajamanickam, Sankaran V, Venkatesan S, David E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. 2019;19(13):1060-1067. doi:https://doi.org/10.2174/1389557519666190311154425

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 2007;39(1):44-84. doi:https://doi.org/10.1016/j.biocel.2006.07.001

Peng S, Liu L, Zhang X, et al. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environmental Health. 2015;14(1). doi:https://doi.org/10.1186/s12940-015-0004-0

Flores CR, Puga MP, Wrobel K, Garay Sevilla ME, Wrobel K. Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Research and Clinical Practice. 2011;91(3):333-341. doi:https://doi.org/10.1016/j.diabres.2010.12.014

Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH. Heavy metals, islet function and diabetes development. Islets. 2009;1(3):169-176. doi:https://doi.org/10.4161/isl.1.3.9262

Lippi G, Targher G. Glycated hemoglobin (HbA1c): old dogmas, a new perspective? Clinical Chemistry and Laboratory Medicine. 2010;48(5). doi:https://doi.org/10.1515/cclm.2010.144

Yang YC, Lii CK, Lin AH, et al. Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. 2011;51(11):2073-2081. doi:https://doi.org/10.1016/j.freeradbiomed.2011.09.007

Khalil I, Yehye WA, Etxeberria AE, et al. Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants. 2019;9(1):24. doi:https://doi.org/10.3390/antiox9010024

Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Frontiers in Bioengineering and Biotechnology. 2020;8. doi:https://doi.org/10.3389/fbioe.2020.00200

Nasri H, Azar Baradaran, Ardalan M, Saeed Mardani, Momeni A, Mahmoud Rafieian-Kopaei. Bright renoprotective properties of metformin: beyond blood glucose regulatory effects. 2013;7(6):423-428.

De Broe Marc E, Kajbaf F, Lalau JD. Renoprotective Effects of Metformin. Nephron. 2017;138(4):261-274. doi:https://doi.org/10.1159/000481951

Posted

2023-08-19

Categories