Genetic Associations with Dyslexia and Attention Deficit Hyperactivity Disorder
DOI:
https://doi.org/10.58445/rars.2888Keywords:
Dyslexia, ADHD, Attention Deficit Hyperactive Disorder, Neurodevelopmental Disorder, Genetics, Comorbidity, Neurotransmitter, Genetic Association, TTRAP, TDP2, DCDC2, KIAA0319, ROBO1, DRD4, DAT1, SLC6A3, HTR1B, 5HTT, SLC6A4, DYX1C1, FOXP2, SORCS3, AMTAbstract
Dyslexia and attention deficit hyperactivity disorder (ADHD) are each highly heritable neurodevelopmental disorders. Dyslexia is a learning disability that generally causes difficulty in reading and associated language tasks while ADHD is associated with difficulty focusing and excess energy, among other symptoms. Dyslexia and ADHD affect approximately 20% and 5% of the population, respectively, and it is fairly common for patients with one of these disorders to also have the other (roughly 24% of people with dyslexia also have ADHD). The high heritability of both conditions suggests that genetics play a large role in their development. Various studies have discovered candidate risk genes and associated chromosome regions for these two disorders, and overlap between the associated genes and regions for both. This literature review overviews strong candidate genes and describes their functions, as well as some specifics of their associations. With this information, we hope to estimate how mutation in the genes would increase the risk of a patient having one or both of these disorders. The genes reviewed that were associated with ADHD or dyslexia individually encoded proteins with similar functions to one another—likely due to consistencies in how each disorder impacts neural functions—while the genes associated with both had more varied roles. Based on this finding, more studies should be conducted to strengthen the association between ADHD and dyslexia and these genes so that we can come closer to proving causation of the disorders.
References
Shaywitz SE, Holahan JM, Kenney B, Shaywitz BA. The Yale Outcome Study: Outcomes for Graduates with and without Dyslexia. J Pediatr Neuropsychol. 2020;6(4):189-197. doi:10.1007/s40817-020-00094-3
Attention-Deficit/Hyperactivity Disorder (ADHD) - National Institute of Mental Health (NIMH). Accessed August 15, 2024. https://www.nimh.nih.gov/health/statistics/attention-deficit-hyperactivity-disorder-adhd
Doust C, Fontanillas P, Eising E, et al. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat Genet. 2022;54(11):1621-1629. doi:10.1038/s41588-022-01192-y
Day C. A Systematic Review of the Correlation Between Dyslexia and the Axon Guidance Receptor Gene, ROBO1.
Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24(4):562-575. doi:10.1038/s41380-018-0070-0
Schumacher J, Hoffmann P, Schmäl C, Schulte‐Körne G, Nöthen MM. Genetics of dyslexia: the evolving landscape. J Med Genet. 2007;44(5):289-297. doi:10.1136/jmg.2006.046516
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, et al. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol Psychiatry. 2021;26(7):3004-3017. doi:10.1038/s41380-020-00898-x
Sánchez-Morán M, Hernández JA, Duñabeitia JA, et al. Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS ONE. 2018;13(10):e0206431. doi:10.1371/journal.pone.0206431
Hershman R, Beckmann L, Henik A. Task and information conflicts in the numerical Stroop task. Psychophysiology. 2022;59(9):e14057. doi:10.1111/psyp.14057
Team AE. Inside the ADHD Brain: Structure, Function, and Chemistry. ADDA - Attention Deficit Disorder Association. December 20, 2022. Accessed July 24, 2024. https://add.org/adhd-brain/
Munzer T, Hussain K, Soares N. Dyslexia: neurobiology, clinical features, evaluation and management. Transl Pediatr. 2020;9(Suppl 1):S36-S45. doi:10.21037/tp.2019.09.07
Arnsten AFT. The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J Pediatr. 2009;154(5):I-S43. doi:10.1016/j.jpeds.2009.01.018
ADHD gender differences: Signs, diagnosis, and more. October 31, 2022. Accessed September 9, 2024. https://www.medicalnewstoday.com/articles/is-adhd-more-common-in-males-or-females
Abdelnour E, Jansen MO, Gold JA. ADHD Diagnostic Trends: Increased Recognition or Overdiagnosis? Mo Med. 2022;119(5):467-473.
How do geneticists indicate the location of a gene?: MedlinePlus Genetics. Accessed August 24, 2024. https://medlineplus.gov/genetics/understanding/howgeneswork/genelocation/
Allele. Accessed September 29, 2024. https://www.genome.gov/genetics-glossary/Allele
Single Nucleotide Polymorphisms (SNPs). Accessed September 29, 2024. https://www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms
FOXP2 forkhead box P2 [Homo sapiens (human)] - Gene - NCBI. Accessed July 18, 2024. https://www.ncbi.nlm.nih.gov/gene/93986#gene-expression
Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020;43(8):608-621. doi:10.1016/j.tins.2020.05.004
Erbeli F, Rice M, Paracchini S. Insights into Dyslexia Genetics Research from the Last Two Decades. Brain Sci. 2021;12(1):27. doi:10.3390/brainsci12010027
TDP2 tyrosyl-DNA phosphodiesterase 2 [Homo sapiens (human)] - Gene - NCBI. Accessed July 16, 2024. https://www.ncbi.nlm.nih.gov/gene/51567#gene-expression
Gómez-Herreros F, Schuurs-Hoeijmakers JHM, McCormack M, et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet. 2014;46(5):516-521. doi:10.1038/ng.2929
Mascheretti S, De Luca A, Trezzi V, et al. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry. 2017;7(1):e987-e987. doi:10.1038/tp.2016.240
Luciano M, Lind PA, Duffy DL, et al. A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biol Psychiatry. 2007;62(7):811-817. doi:10.1016/j.biopsych.2007.03.007
DCDC2 doublecortin domain containing 2 [Homo sapiens (human)] - Gene - NCBI. Accessed July 9, 2024. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=51473#gene-expression
KIAA0319 KIAA0319 [Homo sapiens (human)] - Gene - NCBI. Accessed July 25, 2024. https://www.ncbi.nlm.nih.gov/gene/9856
Javed K, Reddy V, Lui F. Neuroanatomy, Cerebral Cortex. In: StatPearls. StatPearls Publishing; 2024. Accessed July 26, 2024. http://www.ncbi.nlm.nih.gov/books/NBK537247/
Chen Y, Zhao H, Zhang Y xin, Zuo P xiang. DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. Neural Regen Res. 2017;12(2):259-266. doi:10.4103/1673-5374.200809
Deng KG, Zhao H, Zuo PX. Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet. 2019;98(1):62.
ROBO1 roundabout guidance receptor 1 [Homo sapiens (human)] - Gene - NCBI. Accessed July 16, 2024. https://www.ncbi.nlm.nih.gov/gene/6091#gene-expression
Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, et al. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia. PLOS Genet. 2005;1(4):e50. doi:10.1371/journal.pgen.0010050
PubChem. DRD4 - dopamine receptor D4 (human). Accessed July 27, 2024. https://pubchem.ncbi.nlm.nih.gov/gene/DRD4/human
SLC6A3 solute carrier family 6 member 3 [Homo sapiens (human)] - Gene - NCBI. Accessed July 18, 2024. https://www.ncbi.nlm.nih.gov/gene/6531
Turic D, Swanson J, Sonuga-Barke E. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics. Pharmacogenomics Pers Med. 2010;3:61-78.
Portella AK, Papantoni A, Joseph AT, et al. Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys. Sci Rep. 2021;11(1):24094. doi:10.1038/s41598-021-02797-9
HTR1B 5-hydroxytryptamine receptor 1B [Homo sapiens (human)] - Gene - NCBI. Accessed July 18, 2024. https://www.ncbi.nlm.nih.gov/gene/3351
PubChem. SLC6A4 - solute carrier family 6 member 4 (human). Accessed July 18, 2024. https://pubchem.ncbi.nlm.nih.gov/gene/SLC6A4/human
Bidwell LC, Willcutt EG, McQueen MB, et al. A Family Based Association Study of DRD4, DAT1, and 5HTT and Continuous Traits of Attention-Deficit Hyperactivity Disorder. Behav Genet. 2011;41(1):165-174. doi:10.1007/s10519-010-9437-y
Quist JF, Barr CL, Schachar R, et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry. 2003;8(1):98-102. doi:10.1038/sj.mp.4001244
Smoller JW, Biederman J, Arbeitman L, et al. Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry. 2006;59(5):460-467. doi:10.1016/j.biopsych.2005.07.017
DNAAF4 dynein axonemal assembly factor 4 [Homo sapiens (human)] - Gene - NCBI. Accessed July 18, 2024. https://www.ncbi.nlm.nih.gov/gene/161582
Taipale M, Kaminen N, Nopola-Hemmi J, et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci U S A. 2003;100(20):11553-11558. doi:10.1073/pnas.1833911100
Wigg KG, Feng Y, Crosbie J, et al. Association of ADHD and the Protogenin gene in the chromosome 15q21.3 reading disabilities linkage region. Genes Brain Behav. 2008;7(8):877-886. doi:10.1111/j.1601-183X.2008.00425.x
SORCS3 sortilin related VPS10 domain containing receptor 3 [ Homo sapiens (human) ]. Accessed July 27, 2024. https://www.ncbi.nlm.nih.gov/gene/22986
Ciulkinyte A, Mountford HS, Fontanillas P, et al. Genetic neurodevelopmental clustering and dyslexia. Published online October 5, 2023. doi:10.1101/2023.10.04.23296530
PubChem. AMT - aminomethyltransferase (human). Accessed July 22, 2024. https://pubchem.ncbi.nlm.nih.gov/gene/AMT/human
AMT gene: MedlinePlus Genetics. Accessed July 9, 2024. https://medlineplus.gov/genetics/gene/amt/
Pingault JB, Richmond R, Davey Smith G. Causal Inference with Genetic Data: Past, Present, and Future. Cold Spring Harb Perspect Med. 2022;12(3):a041271. doi:10.1101/cshperspect.a041271
Downloads
Posted
Categories
License
Copyright (c) 2025 Alexis Verner

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.