Migratory Bird-Window Collisions: Understanding Physiology, Risk Factors, and Evaluating Mitigation Measures
DOI:
https://doi.org/10.58445/rars.2770Keywords:
Migratory birds, Bird-window collisions, Bird collisions, Urban ecology, UV-reflective markings, Conservation, EcologyAbstract
Migratory birds, totaling ~25% of all bird species, fill many ecological roles and are vital for global ecosystems. Urban areas interrupt migrant flyways, forcing birds to fly through unfamiliar environments. This paper reviews the reasons and risk factors behind bird-window collisions and evaluates mitigation strategies. Birds focus their visual attention on searching for foraging opportunities and predators instead of obstacle detection. This leads to an overload of their visual processing systems in the unfamiliar urban environment, causing 365 to 988 million annual window collisions in the US alone. Larger windows with higher reflectivity are dangerous as they are harder to detect and reflect more of the surrounding environment. Various window markings have been developed to allow birds to detect obstacles; the most effective are vertical stripes (94% risk reduction) and large, round dots (100% risk reduction). Most diurnal migrants can see UV light, which allows effective markings to reflect and absorb UV light, which is invisible to humans. The most effective markings are the 100% absorbent film (100% risk reduction) and any measures to increase the contrast between UV reflectance and absorbance across the same pane (71-91% risk reduction).
References
Amano, T., & Yamaura, Y. (2007). Ecological and life-history traits related to range contractions among breeding birds in Japan. Biological Conservation, 137(2), 271–282. https://doi.org/10.1016/j.biocon.2007.02.010
Bayne, E. M., Scobie, C. A., & Rawson-Clark, M. (2012). Factors influencing the annual risk of bird-window collisions at residential structures in Alberta, Canada. Wildlife Research, 39(7), 583–592. https://doi.org/10.1071/WR11179
Borden, W. C., Lockhart, O. M., Jones, A. W., & Lyons, M. S. (2010). Seasonal, Taxonomic, and Local Habitat Components of Bird-window Collisions on an Urban University Campus in Cleveland, OH. The Ohio Journal of Science, 110(3), 44–52.
Bracey, A. M., Etterson, M. A., Niemi, G. J., & Green, R. F. (2016). Variation in bird-window collision mortality and scavenging rates within an urban landscape. The Wilson Journal of Ornithology, 128(2), 355–367. https://doi.org/10.1676/wils-128-02-355-367.1
Campenhausen, M., & Kirschfeld, K. (1998). Spectral sensitivity of the accessory optic system of the pigeon. Journal of Comparative Physiology A, 183(1), 1–6. https://doi.org/10.1007/s003590050229
Cruden, R. W. (1972). Pollinators in High-Elevation Ecosystems: Relative Effectiveness of Birds and Bees. Science, 176(4042), 1439–1440. https://doi.org/10.1126/science.176.4042.1439
Cusa, M., Jackson, D. A., & Mesure, M. (2015). Window collisions by migratory bird species: Urban geographical patterns and habitat associations. Urban Ecosystems, 18(4), 1427–1446. https://doi.org/10.1007/s11252-015-0459-3
Ferger, S. (2022). Working together for Europe’s migratory birds. https://www.euronatur.org/fileadmin/_processed_/2/d/csm_European-African-Flyways_6edd1fb883.jpg
González-Varo, J. P., Rumeu, B., Albrecht, J., Arroyo, J. M., Bueno, R. S., Burgos, T., da Silva, L. P., Escribano-Ávila, G., Farwig, N., García, D., Heleno, R. H., Illera, J. C., Jordano, P., Kurek, P., Simmons, B. I., Virgós, E., Sutherland, W. J., & Traveset, A. (2021). Limited potential for bird migration to disperse plants to cooler latitudes. Nature, 595(7865), Article 7865. https://doi.org/10.1038/s41586-021-03665-2
Groot, K. L. D., Wilson, A. G., McKibbin, R., Hudson, S. A., Dohms, K. M., Norris, A. R., Huang, A. C., Whitehorne, I. B. J., Fort, K. T., Roy, C., Bourque, J., & Wilson, S. (2022). Bird protection treatments reduce bird-window collision risk at low-rise buildings within a Pacific coastal protected area. PeerJ, 10, e13142. https://doi.org/10.7717/peerj.13142
Hager, S., & Craig, M. (2014). Bird-window collisions in the summer breeding season. PeerJ, 2. https://doi.org/10.7717/peerj.460
Hartz, S. M., Pinheiro, G. C., Mendonça-Lima, A. D., & Duarte, L. D. S. (2012). The Potential Role of Migratory Birds in the Expansion of Araucaria Forest. Natureza & Conservação, 10(1), 52–56. https://doi.org/10.4322/natcon.2012.009
Håstad, O., & Ödeen, A. (2014). A vision physiological estimation of ultraviolet window marking visibility to birds. PeerJ, 2, e621. https://doi.org/10.7717/peerj.621
Heleno, R. H., Ross, G., Everard, A., Memmott, J., & Ramos, J. A. (2011). The role of avian ‘seed predators’ as seed dispersers. Ibis, 153(1), 199–203. https://doi.org/10.1111/j.1474-919X.2010.01088.x
Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as Ecosystem Engineers. Oikos, 69(3), 373. https://doi.org/10.2307/3545850
Kahle, L. Q., Flannery, M. E., & Dumbacher, J. P. (2016). Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco. PLOS ONE, 11(1), e0144600. https://doi.org/10.1371/journal.pone.0144600
Kirby, J. S., Stattersfield, A. J., Butchart, S. H. M., Evans, M. I., Grimmett, R. F. A., Jones, V. R., O’Sullivan, J., Tucker, G. M., & Newton, I. (2008). Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conservation International, 18(S1), S49–S73. https://doi.org/10.1017/S0959270908000439
Klem, D. (2009). Preventing Bird–Window Collisions. The Wilson Journal of Ornithology, 121(2), 314–321. https://doi.org/10.1676/08-118.1
Klem, D., Farmer, C. J., Delacretaz, N., Gelb, Y., & Saenger, P. G. (2009). Architectural and Landscape Risk Factors Associated with Bird–glass Collisions in an Urban Environment. The Wilson Journal of Ornithology, 121(1), 126–134. https://doi.org/10.1676/08-068.1
Klem, D., & Saenger, P. G. (2013). Evaluating the Effectiveness of Select Visual Signals to Prevent Bird-window Collisions. The Wilson Journal of Ornithology, 125(2), 406–411. https://doi.org/10.1676/12-106.1
Kranstauber, B., Weinzierl, R., Wikelski, M., & Safi, K. (2015). Global aerial flyways allow efficient travelling. Ecology Letters, 18(12), 1338–1345. https://doi.org/10.1111/ele.12528
La Sorte, F. A., Fink, D., Buler, J. J., Farnsworth, A., & Cabrera-Cruz, S. A. (2017). Seasonal associations with urban light pollution for nocturnally migrating bird populations. Global Change Biology, 23(11), 4609–4619. https://doi.org/10.1111/gcb.13792
Loss, S. R., Will, T., Loss, S. S., & Marra, P. P. (2014). Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor, 116(1), 8–23. https://doi.org/10.1650/CONDOR-13-090.1
Mainwaring, M. C. (2017). Why Birds Matter: Avian Ecological Function and Ecosystem Services. The Condor, 119(2), 354–355. https://doi.org/10.1650/CONDOR-17-9.1
Martin, G. R. (2011). Understanding bird collisions with man-made objects: A sensory ecology approach. Ibis, 153(2), 239–254. https://doi.org/10.1111/j.1474-919X.2011.01117.x
Martin, G. R. (2017). What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00619
Powers, K. E., Burroughs, L. A., Harris, N. I., & Harris, R. C. (2021). Biases in Bird-Window Collisions: A Focus on Scavengers and Detection Rates by Observers. Southeastern Naturalist, 20(2). https://doi.org/10.1656/058.020.0207
Rajchard, J. (2009). Ultraviolet (UV) light perception by birds: A review. Veterinární Medicína, 54(8), 351–359. https://doi.org/10.17221/110/2009-VETMED
Ramsey, M. W. (1988). Differences in pollinator effectiveness of birds and insects visiting Banksia menziesii (Proteaceae). Oecologia, 76(1), 119–124. https://doi.org/10.1007/BF00379609
Rössler, M., Nemeth, E., & Bruckner, A. (2015). Glass pane markings to prevent bird-window collisions: Less can be more. Biologia, 70(4), 535–541. https://doi.org/10.1515/biolog-2015-0057
Sabo, A. M., Hagemeyer, N. D. G., Lahey, A. S., & Walters, E. L. (2016). Local avian density influences risk of mortality from window strikes. PeerJ, 4, e2170. https://doi.org/10.7717/peerj.2170
Schmaljohann, H., Eikenaar, C., & Sapir, N. (2022). Understanding the ecological and evolutionary function of stopover in migrating birds. Biological Reviews, 97(4), 1231–1252. https://doi.org/10.1111/brv.12839
Sheppard, C. D. (2019). Evaluating the relative effectiveness of patterns on glass as deterrents of bird collisions with glass. Global Ecology and Conservation, 20, e00795. https://doi.org/10.1016/j.gecco.2019.e00795
Swaddle, J. P., Emerson, L. C., Thady, R. G., & Boycott, T. J. (2020). Ultraviolet-reflective film applied to windows reduces the likelihood of collisions for two species of songbird. PeerJ, 8, e9926. https://doi.org/10.7717/peerj.9926
Viana, D. S., Gangoso, L., Bouten, W., & Figuerola, J. (2016). Overseas seed dispersal by migratory birds. Proceedings of the Royal Society B: Biological Sciences, 283(1822), 20152406. https://doi.org/10.1098/rspb.2015.2406
Whelan, C. J., Wenny, D. G., & Marquis, R. J. (2008). Ecosystem Services Provided by Birds. Annals of the New York Academy of Sciences, 1134(1), 25–60. https://doi.org/10.1196/annals.1439.003
Downloads
Posted
Categories
License
Copyright (c) 2025 Ryan Zhang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.