Preprint / Version 1

The Consumption of Artificial Sweeteners Aspartame and Sucralose Possibly Induces Progression of Parkinson’s Disease Through Mutations in SNCA and LRRK2 Genes

##article.authors##

  • Anoushka Bhaskar Independent Researcher

DOI:

https://doi.org/10.58445/rars.2689

Keywords:

artificial sweeteners, SNCA, LRRK2, genetic mutation

Abstract

The present study correlates the onset and progression of Parkinson’s Disease with the use of artificial sweeteners aspartame and sucralose through neuroinflammation, oxidative stress, and the loss of dopaminergic neurons. In this study, the existing literature was extensively reviewed to identify the genetic mutations causing this neurodegenerative disorder. The mutations which were significantly contributing to the induction of Parkinson’s were found in SNCA and LRRK2 genes. To further evaluate the functional aspects of the genetic mutations, the wild type and mutated protein sequences and structures were studied through computational analysis by using tools like multiple sequence alignment and homology modeling. The prolonged consumption of selected artificial sweeteners leads to the generation of free radicals and inflammatory responses in influential neurological regions in Parkinson’s Disease, which leads to the loss of dopaminergic neurons. This study concludes that use of selected artificial sweeteners could interact with the pathways involving mutated genes accelerating the development of Parkinson’s disease.

References

Amin, S. N., Hassan, S. S., & Rashed, L. A. (2018). Effects of chronic aspartame consumption on MPTP-induced Parkinsonism in male and female mice. Archives of Physiology and Biochemistry, 124(4), 292–299. https://doi.org/10.1080/13813455.2017.1396348

Carmichael, K., Sullivan, B., Lopez, E., Sun, L., & Cai, H. (2021). Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. Ageing Neur Dis, 1(4), https://doi.org/10.20517/and.2021.07

Choudhary, A. K., & Lee, Y. Y. (2018). Neurophysiological symptoms and aspartame: What is the connection?. Nutritional Neuroscience, 21(5), 306–316. https://doi.org/10.1080/1028415X.2017.1288340

Czarnecka, K., Pilarz, A., Rogut, A., Maj, P., Szymańska, J., Olejnik, Ł., & Szymański, P. (2021). Aspartame—true or false? Narrative review of safety analysis of general use in products. Nutrients, 13(6), 1957. https://doi.org/10.3390/nu13061957

Dar, W. (2024). Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. International immunopharmacology, 135, 112295. https://doi.org/10.1016/j.intimp.2024.112295

Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson's disease. Journal of Parkinson's disease, 3(4), 461–491. https://doi.org/10.3233/JPD-130230

DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: the devil is in the details. Journal of neurochemistry, 139(2), 136–153. https://doi.org/10.1111/jnc.13607

Greenbaum, E. A., Graves, C. L., Mishizen-Eberz, A. J., Lupoli, M. A., Lynch, D. R., Englander, S. W., Axelsen, P. H., & Giasson, B. I. (2005). The E46K mutation in Α-Synuclein increases amyloid fibril formation. Journal of Biological Chemistry, 280(9), 7800–7807. https://doi.org/10.1074/jbc.m411638200

Griebsch, L. V., Theiss, E. L., Janitschke, D., Erhardt, V. K. J., Erhardt, T., Haas, E. C., Kuppler, K. N., Radermacher, J., Walzer, O., Lauer, A. A., Matschke, V., Hartmann, T., Grimm, M. O. W., & Grimm, H. S. (2023). Aspartame and its metabolites cause oxidative stress and mitochondrial and lipid alterations in SH-SY5Y cells. Nutrients, 15(6), 1467. https://doi.org/10.3390/nu15061467

Jahabardeen, A., S, N., J, N., & V, C. (2024). A review on the role of SNCA gene in neurodegenerative diseases. Cureus, 16(9), 69450. https://doi.org/10.7759/cureus.69450

Kundu, N., Domingues, C. C., Patel, J., Aljishi, M., Ahmadi, N., Fakhri, M., Sylvetsky, A. C., & Sen, S. (2020). Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells. Stem Cell Research & Therapy, 11(1). https://doi.org/10.1186/s13287-020-01753-0

Lee, J. W., & Cannon, J. R. (2015). LRRK2 mutations and neurotoxicant susceptibility. Experimental biology and medicine, 240(6), 752–759. https://doi.org/10.1177/1535370215579162

Liu, T. W., Chen, C. M., & Chang, K. H. (2022). Biomarker of neuroinflammation in Parkinson's disease. International Journal of Molecular Sciences, 23(8), 4148. https://doi.org/10.3390/ijms23084148

Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., & Aebischer, P. (2002). alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10813–10818. https://doi.org/10.1073/pnas.152339799

Meder, D., Herz, D. M., Rowe, J. B., Lehéricy, S., & Siebner, H. R. (2019). The role of dopamine in the brain - lessons learned from Parkinson's disease. NeuroImage, 190, 79–93. https://doi.org/10.1016/j.neuroimage.2018.11.021

Mohammed, D. M., Abdelgawad, M. A., Ghoneim, M. M., Alhossan, A., Al-Serwi, R. H., & Farouk, A. (2024). Impact of some natural and artificial sweeteners consumption on different hormonal levels and inflammatory cytokines in male rats: in vivo and in silico studies. ACS Omega, 9(28), 30364–30380. https://doi.org/10.1021/acsomega.4c01250

Moon, H. E., & Paek, S. H. (2015). Mitochondrial dysfunction in Parkinson's disease. Experimental neurobiology, 24(2), 103–116. https://doi.org/10.5607/en.2015.24.2.103

Mosharov, E. V., Larsen, K. E., Kanter, E., Phillips, K. A., Wilson, K., Schmitz, Y., Krantz, D. E., Kobayashi, K., Edwards, R. H., & Sulzer, D. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron, 62(2), 218–229. https://doi.org/10.1016/j.neuron.2009.01.033

Mullin, S., & Schapira, A. (2013). α-Synuclein and mitochondrial dysfunction in Parkinson's disease. Molecular Neurobiology, 47(2), 587–597. https://doi.org/10.1007/s12035-013-8394-x

Podoly, E., Hanin, G., & Soreq, H. (2010). Alanine-to-threonine substitutions and amyloid diseases: butyrylcholinesterase as a case study. Chemico-Biological Interactions, 187(1-3), 64–71. https://doi.org/10.1016/j.cbi.2010.01.003

Program, H. F. (2025). Aspartame and other sweeteners in food. U.S. Food And Drug Administration. https://www.fda.gov/food/food-additives-petitions/aspartame-and-other-sweeteners-food

Reish, H. E. A., & Standaert, D. G. (2015). Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. Journal of Parkinson's Disease, 5(1), 1–19. https://doi.org/10.3233/JPD-140491

Reiszadeh Jahromi, S., Ramesh, S. R., Finkelstein, D. I., & Haddadi, M. (2021). α-Synuclein E46K mutation and involvement of oxidative stress in a drosophila model of Parkinson's disease. Parkinson's Disease, 2021, 1-12. https://doi.org/10.1155/2021/6621507

Ren, C., Ding, Y., Wei, S., Guan, L., Zhang, C., Ji, Y., Wang, F., Yin, S., & Yin, P. (2019). G2019S variation in LRRK2: an ideal model for the study of Parkinson's disease?. Frontiers in human neuroscience, 13, 306. https://doi.org/10.3389/fnhum.2019.00306

Schiffman, S. S., Scholl, E. H., Furey, T. S., & Nagle, H. T. (2023). Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. Journal of Toxicology and Environmental Health, Part B, 26(6), 307–341. https://doi.org/10.1080/10937404.2023.2213903

Sharma, D., Patel, S., Padh, H., & Desai, P. (2016) Immunoinformatic identification of potential epitopes against shigellosis. International Journal of Peptide Research and Therapeutics, 22, 481–495. https://doi.org/10.1007/s10989-016-9528-6

Shaw, B. C., Anders, V. R., Tinkey, R. A., Habean, M. L., Brock, O. D., Frostino, B. J., & Williams, J. L. (2023). Immunity impacts cognitive deficits across neurological disorders. Journal of Neurochemistry, 168(10), 3512-3535. https://doi.org/10.1111/jnc.15999

Siddiqui, I., Pervaiz, N. & Abbasi, A. (2016) The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci Rep, 6, 24475. https://doi.org/10.1038/srep24475

Tanowitz, M., & Von Zastrow, M. (2010). Handbook of cell signaling. Elsevier eBooks, 1. https://doi.org/10.1016/b978-0-12-374145-5.x0001-0

Trevisan, L., Gaudio, A., Monfrini, E., Avanzino, L., Di Fonzo, A., & Mandich, P. (2024). Genetics in Parkinson’s disease state-of-the-art and future perspectives. British Medical Bulletin, 149(1), 60-71. https://doi.org/10.1093/bmb/ldad035

Wise-Scira, O., Aloglu, A. K., Dunn, A., Sakallioglu, I. T., & Coskuner, O. (2013). Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics. ACS chemical neuroscience, 4(3), 486–497. https://doi.org/10.1021/cn300198q

Downloads

Posted

2025-07-03

Categories