Preprint / Version 1

Osteoblasts, Osteoclasts and Endothelial Cells in Microgravity

##article.authors##

  • Tracy Wang Polygence
  • Jacob Odell Mentor

DOI:

https://doi.org/10.58445/rars.2551

Keywords:

Osteoblasts, Osteoclasts, Endothelial Cells, Microgravity

Abstract

This paper will discuss the changes in osteoblasts, osteoclasts, and endothelial cells in a microgravity environment. According to NASA, microgravity is defined as a force of 1x10-6 g. Microgravity causes objects or humans in space to experience weightlessness. That weightlessness causes cell shape changes in bone and endothelial cells. In bone cells, microgravity causes an overall imbalance of these cells in the body, leading to major effects on their metabolic pathways. The metabolic pathways disrupted in microgravity cause an increase in reactive oxygen species. In endothelial cells, microgravity creates a stress response, which then causes an increase in caveolin1 gene expression. Ultimately, the changes caused in these cells lead to bone loss, imbalance, and a decrease in human cardiovascular health (Pietsch et al., 2011). In this text, we would also describe possible mechanisms to combat these negative side effects in the future and some experiments that could shed light on these topics.

References

[ Record Viewer ] NLSP. (n.d.). Retrieved May 11, 2024, from https://nlsp.nasa.gov/view/lsdapub/lsda_hardware/IDP-LSDA_HARDWARE-0000000000000711

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Blood Vessels and Endothelial Cells. In Molecular Biology of the Cell. 4th edition. Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26848/

Blaber, E. A., Dvorochkin, N., Lee, C., Alwood, J. S., Yousuf, R., Pianetta, P., Globus, R. K., Burns, B. P., & Almeida, E. A. C. (2013). Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21. PLOS ONE, 8(4), e61372. https://doi.org/10.1371/journal.pone.0061372

Bradbury, P., Wu, H., Choi, J. U., Rowan, A. E., Zhang, H., Poole, K., Lauko, J., & Chou, J. (2020). Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease. Frontiers in Cell and Developmental Biology, 8. https://www.frontiersin.org/articles/10.3389/fcell.2020.00096

Distelmaier, F., Valsecchi, F., Forkink, M., van Emst-de Vries, S., Swarts, H. G., Rodenburg, R. J. T., Verwiel, E. T. P., Smeitink, J. A. M., Willems, P. H. G. M., & Koopman, W. J. H. (2012). Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells. Antioxidants & Redox Signaling, 17(12), 1657–1669. https://doi.org/10.1089/ars.2011.4294

Domazetovic, V., Marcucci, G., Iantomasi, T., Brandi, M. L., & Vincenzini, M. T. (2017). Oxidative stress in bone remodeling: Role of antioxidants. Clinical Cases in Mineral and Bone Metabolism: The Official Journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, 14(2), 209–216. https://doi.org/10.11138/ccmbm/2017.14.1.209

Dominguez, R., & Holmes, K. C. (2011). Actin Structure and Function. Annual Review of Biophysics, 40, 169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

Feher, J. (2017). 9.8 - Calcium and Phosphorus Homeostasis II: Target Tissues and Integrated Control. In J. Feher (Ed.), Quantitative Human Physiology (Second Edition) (pp. 933–945). Academic Press. https://doi.org/10.1016/B978-0-12-800883-6.00091-4

Félétou, M. (2011). Introduction. In The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive Mediators. Morgan & Claypool Life Sciences. https://www.ncbi.nlm.nih.gov/books/NBK57145/

Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485–492. https://doi.org/10.1038/nature08908

Förstermann, U., & Münzel, T. (2006). Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation, 113(13), 1708–1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

Giordano, M. E., Caricato, R., & Lionetto, M. G. (2020). Concentration Dependence of the Antioxidant and Prooxidant Activity of Trolox in HeLa Cells: Involvement in the Induction of Apoptotic Volume Decrease. Antioxidants, 9(11), 1058. https://doi.org/10.3390/antiox9111058

Heiss, C., Rodriguez-Mateos, A., & Kelm, M. (2015). Central Role of eNOS in the Maintenance of Endothelial Homeostasis. Antioxidants & Redox Signaling, 22(14), 1230–1242. https://doi.org/10.1089/ars.2014.6158

Hughes-Fulford, M., & Lewis, M. L. (1996). Effects of microgravity on osteoblast growth activation. Experimental Cell Research, 224(1), 103–109. https://doi.org/10.1006/excr.1996.0116

KIANI, A. K., BONETTI, G., MEDORI, M. C., CARUSO, P., MANGANOTTI, P., FIORETTI, F., NODARI, S., CONNELLY, S. T., & BERTELLI, M. (2022). Dietary supplements for improving nitric-oxide synthesis. Journal of Preventive Medicine and Hygiene, 63(2 Suppl 3), E239–E245. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2766

Kim, J.-M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J.-H. (2020). Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 9(9), 2073. https://doi.org/10.3390/cells9092073

Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; International Review of Thoracic Diseases, 85(1), 3–10. https://doi.org/10.1159/000345615

Li, Y.-C., Chiang, C.-W., Yeh, H.-C., Hsu, P.-Y., Whitby, F. G., Wang, L.-H., & Chan, N.-L. (2008). Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change. The Journal of Biological Chemistry, 283, 2917–2926. https://doi.org/10.1074/jbc.M707470200

Marrocco, I., Altieri, F., & Peluso, I. (2017). Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Medicine and Cellular Longevity, 2017, 6501046. https://doi.org/10.1155/2017/6501046

Mohamed, A. M. (2008). An Overview of Bone Cells and their Regulating Factors of Differentiation. The Malaysian Journal of Medical Sciences : MJMS, 15(1), 4–12.

Morabito, C., Guarnieri, S., Cucina, A., Bizzarri, M., & Mariggiò, M. A. (2020). Antioxidant Strategy to Prevent Simulated Microgravity-Induced Effects on Bone Osteoblasts. International Journal of Molecular Sciences, 21(10), 3638. https://doi.org/10.3390/ijms21103638

Morbidelli, L., Genah, S., & Cialdai, F. (2021). Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Frontiers in Bioengineering and Biotechnology, 9, 720091. https://doi.org/10.3389/fbioe.2021.720091

Osteoclast—An overview | ScienceDirect Topics. (n.d.). Retrieved March 25, 2024, from https://www.sciencedirect.com/topics/neuroscience/osteoclast

Parton, R. G., & Boucrot, E. (2023). Mechanisms of Endocytosis II Non-Clathrin. In R. A. Bradshaw, G. W. Hart, & P. D. Stahl (Eds.), Encyclopedia of Cell Biology (Second Edition) (pp. 545–554). Academic Press. https://doi.org/10.1016/B978-0-12-821618-7.00026-2

Pietsch, J., Bauer, J., Egli, M., Infanger, M., Wise, P., Ulbrich, C., & Grimm, D. (2011). The Effects of Weightlessness on the Human Organism and Mammalian Cells. Current Molecular Medicine, 11(5), 350–364. https://doi.org/10.2174/156652411795976600

PubChem. (n.d.). Trolox. Retrieved March 25, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/40634

Qian, A. R., Li, D., Han, J., Gao, X., Di, S. M., Zhang, W., Hu, L. F., & Shang, P. (2012). Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Transactions on Bio-Medical Engineering, 59(5), 1374–1380. https://doi.org/10.1109/TBME.2012.2187785

Qiu, Z.-Y., Cui, Y., & Wang, X.-M. (2019). Chapter 1—Natural Bone Tissue and Its Biomimetic. In X.-M. Wang, Z.-Y. Qiu, & H. Cui (Eds.), Mineralized Collagen Bone Graft Substitutes (pp. 1–22). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102717-2.00001-1

Raspor, P., Plesnicar, S., Gazdag, Z., Pesti, M., Miklavcic, M., Lah, B., Logar-Marinsek, R., & Poljsak, B. (2005). Prevention of intracellular oxidation in yeast: The role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biology International, 29(1), 57–63. https://doi.org/10.1016/j.cellbi.2004.11.010

Ricci, P. (2016). Chapter 3—Time-Domain Models. In M. Folley (Ed.), Numerical Modelling of Wave Energy Converters (pp. 31–66). Academic Press. https://doi.org/10.1016/B978-0-12-803210-7.00003-7

Spisni, E., Bianco, M. C., Griffoni, C., Toni, M., D’Angelo, R., Santi, S., Riccio, M., & Tomasi, V. (2003). Mechanosensing role of caveolae and caveolar constituents in human endothelial cells. Journal of Cellular Physiology, 197(2), 198–204. https://doi.org/10.1002/jcp.10344

Stitham, J., Midgett, C., Martin, K. A., & Hwa, J. (2011). Prostacyclin: An Inflammatory Paradox. Frontiers in Pharmacology, 2, 24. https://doi.org/10.3389/fphar.2011.00024

Tafazoli, S., Wright, J. S., & O’Brien, P. J. (2005). Prooxidant and antioxidant activity of vitamin E analogues and troglitazone. Chemical Research in Toxicology, 18(10), 1567–1574. https://doi.org/10.1021/tx0500575

Tousoulis, D., Kampoli, A.-M., Tentolouris, C., Papageorgiou, N., & Stefanadis, C. (2012). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4–18. https://doi.org/10.2174/157016112798829760

Turini, M. E., & DuBois, R. N. (2002). Cyclooxygenase-2: A therapeutic target. Annual Review of Medicine, 53, 35–57. https://doi.org/10.1146/annurev.med.53.082901.103952

Versari, S., Villa, A., Bradamante, S., & Maier, J. A. M. (2007). Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(11), 1645–1652. https://doi.org/10.1016/j.bbamcr.2007.05.014

What is Microgravity? - NASA. (n.d.). Retrieved March 15, 2024, from https://www.nasa.gov/centers-and-facilities/glenn/what-is-microgravity/

Winterbourn, C. C. (2014). The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica Et Biophysica Acta, 1840(2), 730–738. https://doi.org/10.1016/j.bbagen.2013.05.004

Posted

2025-06-26

Categories