Determining how select SCFAs mechanistically affect IBD
Role of SCFAs on IBD
DOI:
https://doi.org/10.58445/rars.2328Keywords:
Crohn's Disease, IBD, Diets, SCD, immunology, HealthcareAbstract
Inflammatory bowel disease (IBD) is a chronic autoimmune condition that affects the gastrointestinal tract, causing debilitating symptoms like chronic abdominal pain, diarrhea, fatigue, and reduced quality of life. Although treatments such as biologics, surgeries, steroids, and antibiotics are available, recent research suggests dietary interventions may offer additional benefits. Specifically, diets like the Specific Carbohydrate Diet and the Crohn’s Disease Exclusion Diet have shown promise in reducing IBD symptoms for some patients, although the mechanisms by which diet modulates the immune response remain unclear. This study investigated how molecules derived from dietary fibers, namely short-chain fatty acids (SCFAs), impact inflammation. Using a co-culture system of Caco2 cells (intestinal epithelial cell surrogate) and peripheral blood mononuclear cells (PBMCs, immune cell surrogates), varying concentrations of the SCFAs butyrate and propionate were added to assess their influence on inflammatory markers post lipopolysaccharides (LPS) stimulation. Results indicated that both butyrate and propionate significantly upregulated anti-inflammatory markers while downregulating pro-inflammatory markers, shedding light on the potential mechanisms by which SCFAs can modulate immune activity in IBD. These findings underscore the therapeutic potential of dietary SCFAs and support further exploration of diet as an adjunct treatment for IBD.
References
Lewis, J. D., Parlett, L. E., Jonsson Funk, M. L., Brensinger, C., Pate, V., Wu, Q., Dawwas, G. K., Weiss, A., Constant, B. D., McCauley, M., Haynes, K., Yang, J. Y., Schaubel, D. E., Hurtado-Lorenzo, A., & Kappelman, M. D. (2023). Incidence, Prevalence, and Racial and Ethnic Distribution of Inflammatory Bowel Disease in the United States. Gastroenterology, 165(5), 1197-1205.e2. https://doi.org/10.1053/j.gastro.2023.07.003
Saeid Seyedian, S., Nokhostin, F., & Dargahi Malamir, M. (2019). A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of Medicine and Life, 12(2), 113–122. https://doi.org/10.25122/jml-2018-0075
Ashton, J. J., Gavin, J., & Beattie, R. M. (2019). Exclusive enteral nutrition in Crohn’s disease: Evidence and practicalities. Clinical Nutrition, 38(1), 80–89. https://doi.org/10.1016/j.clnu.2018.01.020
Correia, I., Oliveira, P. A., Antunes, M. L., Raimundo, M. da G., & Moreira, A. C. (2024). Is There Evidence of Crohn’s Disease Exclusion Diet (CDED) in Remission of Active Disease in Children and Adults? A Systematic Review. Nutrients, 16(7), 987. https://doi.org/10.3390/nu16070987
Suskind, D. L., Wahbeh, G., Cohen, S. A., Damman, C. J., Klein, J., Braly, K., Shaffer, M., & Lee, D. (2016). Patients Perceive Clinical Benefit with the Specific Carbohydrate Diet for Inflammatory Bowel Disease. Digestive Diseases and Sciences, 61(11), 3255–3260. https://doi.org/10.1007/s10620-016-4307-y
Reddavide, R., Rotolo, O., Caruso, M. G., Stasi, E., Notarnicola, M., Miraglia, C., Nouvenne, A., Meschi, T., De’ Angelis, G. L., di Mario, F., & Leandro, G. (2018). The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. Acta Bio-Medica : Atenei Parmensis, 89(9-S), 60–75. https://doi.org/10.23750/abm.v89i9-S.7952
Shin, Y., Han, S., Kwon, J., Ju, S., Choi, T., Kang, I., & Kim, S. (2023). Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients, 15(20), 4466. https://doi.org/10.3390/nu15204466
Ngkelo, A., Meja, K., Yeadon, M., Adcock, I., & Kirkham, P. A. (2012). LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling. Journal of Inflammation, 9(1), 1. https://doi.org/10.1186/1476-9255-9-1
Le, N. P. K., Altenburger, M. J., & Lamy, E. (2023). Development of an Inflammation-Triggered In Vitro “Leaky Gut” Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages. International Journal of Molecular Sciences, 24(8), 7427. https://doi.org/10.3390/ijms24087427
Amsen, D., Visser, K. E., & Town, T. (2009). Approaches to Determine Expression of Inflammatory Cytokines. Springer Protocols, pp. 107–142. https://doi.org/10.1007/978-1-59745-447-6_5
Patera, A. C., & Cohen, J. I. (2001). Measurement of Interleukin 17. Current Protocols in Immunology, 41(1). https://doi.org/10.1002/0471142735.im0625s41
Canani, R. B. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519. https://doi.org/10.3748/wjg.v17.i12.1519
Gao, G., Zhou, J., Wang, H., Ding, Y., Zhou, J., Chong, P. H., Zhu, L., Ke, L., Wang, X., Rao, P., Wang, Q., & Zhang, L. (2022). Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers. Molecular Biology Reports, 49(3), 1817–1825. https://doi.org/10.1007/s11033-021-06991-w
Korsten, S. G. P. J., Vromans, H., Garssen, J., & Willemsen, L. E. M. (2023). Butyrate Protects Barrier Integrity and Suppresses Immune Activation in a Caco-2/PBMC Co-Culture Model While HDAC Inhibition Mimics Butyrate in Restoring Cytokine-Induced Barrier Disruption. Nutrients, 15(12), 2760. https://doi.org/10.3390/nu15122760
Parada Venegas, D., de la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00277
Peng, L., He, Z., Chen, W., Holzman, I. R., & Lin, J. (2007). Effects of Butyrate on Intestinal Barrier Function in a Caco-2 Cell Monolayer Model of Intestinal Barrier. Pediatric Research, 61(1), 37–41. https://doi.org/10.1203/01.pdr.0000250014.92242.f3
Piotrowska, M., Binienda, A., & Fichna, J. (2021). The role of fatty acids in Crohn’s disease pathophysiology – An overview. Molecular and Cellular Endocrinology, 538, 111448. https://doi.org/10.1016/j.mce.2021.111448
Shin, Y., Han, S., Kwon, J., Ju, S., Choi, T., Kang, I., & Kim, S. (2023). Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients, 15(20), 4466. https://doi.org/10.3390/nu15204466
Sitolo, G. C., Mitarai, A., Adesina, P. A., Yamamoto, Y., & Suzuki, T. (2020). Fermentable fibers upregulate suppressor of cytokine signaling1 in the colon of mice and intestinal Caco-2 cells through butyrate production. Bioscience, Biotechnology, and Biochemistry, 84(11), 2337–2346. https://doi.org/10.1080/09168451.2020.1798212
Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-α signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression, 20(2), 87–103. https://doi.org/10.1615/critreveukargeneexpr.v20.i2.10
van Loo, G., & Bertrand, M. J. M. (2023). Death by TNF: a road to inflammation. Nature Reviews Immunology, 23(5), 289–303. https://doi.org/10.1038/s41577-022-00792-3
Yamada, A., Arakaki, R., Saito, M., Tsunematsu, T., Kudo, Y., & Ishimaru, N. (2016). Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 22(7), 2195–2205. https://doi.org/10.3748/wjg.v22.i7.2195
Clough, J. N., Omer, O. S., Tasker, S., Lord, G. M., & Irving, P. M. (2020). Regulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut, 69(5), 942–952. https://doi.org/10.1136/gutjnl-2019-319850
Vignali, D. A. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8(7), 523–532. https://doi.org/10.1038/nri2343
Kayali, S., Fantasia, S., Gaiani, F., Cavallaro, L. G., de’Angelis, G. L., & Laghi, L. (2024). NOD2 and Crohn’s Disease Clinical Practice: From Epidemiology to Diagnosis and Therapy, Rewired. Inflammatory Bowel Diseases. https://doi.org/10.1093/ibd/izae075
Ashton, J. J., Seaby, E. G., Beattie, R. M., & Ennis, S. (2023). NOD2 in Crohn’s Disease-Unfinished Business. Journal of Crohn’s & Colitis, 17(3), 450–458. https://doi.org/10.1093/ecco-jcc/jjac124
Li, L.-J., Gong, C., Zhao, M.-H., & Feng, B.-S. (2014). Role of interleukin-22 in inflammatory bowel disease. World Journal of Gastroenterology, 20(48), 18177–18188. https://doi.org/10.3748/wjg.v20.i48.18177
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. https://doi.org/10.1038/nature12726

Downloads
Posted
Categories
License
Copyright (c) 2025 Ethan Traister

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.