Preprint / Version 1

Identifying the most effective drug combination for the treatment of Cystic Fibrosis

##article.authors##

  • Ashna Mahajan RN Podar school

DOI:

https://doi.org/10.58445/rars.2155

Keywords:

Cystic Fibrosis (CF), Cystic fibrosis transmembrane regulator (CFTR), Potentiator, Ivacaftor, Corrector

Abstract

Cystic fibrosis transmembrane regulator (CFTR) is a cell membrane protein that serves as a chloride ion channel. If defective CFTR protein is synthesized, it interferes with  the function of the secreted mucus, changing its consistency. The most common cause of the defective CFTR protein is deletion mutation indicated as F508del. 80% of CF patients carry this mutation and suffer from the symptoms associated with thick mucus. Correctors are artificially designed drugs to minimize the effect of defective CFTR protein. Correctors are commonly used in combination with a potentiator, Ivacaftor. To date, three such corrector-potentiator combinations have been used, namely, LUMA/IVA, TEZA/IVA and ELEXA/TEZA/IVA (Trikafta). More than 85% of CF patients are subjected to this therapy. This paper reviews the effectiveness of these combinations, studying the parameters that indicate lung, liver, and pancreas functions.

References

Colombo, C., Foppiani, A., Bisogno, A., Gambazza, S., Daccò, V., Nazzari, E., Leone, A., Giana, A., Mari, A., & Battezzati, A. (2021). Lumacaftor/ivacaftor in cystic fibrosis: effects on glucose metabolism and insulin secretion. Journal of Endocrinological Investigation, 44(10), 2213–2218. https://doi.org/10.1007/s40618-021-01525-4

Davies, J. C., Moskowitz, S. M., Brown, C., Horsley, A., Mall, M. A., McKone, E. F., Plant, B. J., Prais, D., Ramsey, B. W., Taylor-Cousar, J. L., Tullis, E., Uluer, A., McKee, C. M., Robertson, S., Shilling, R. A., Simard, C., Van Goor, F., Waltz, D., Xuan, F., … Rowe, S. M. (2018). VX-659–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. New England Journal of Medicine, 379(17), 1599–1611. https://doi.org/10.1056/NEJMoa1807119

Duong, J. T., Pope, C. E., Hayden, H. S., Miller, C., Salipante, S. J., Rowe, S. M., Solomon, G. M., Nichols, D., Hoffman, L. R., Narkewicz, M. R., & Green, N. (2024). Alterations in the fecal microbiota in patients with advanced cystic fibrosis liver disease after 6 months of elexacaftor/tezacaftor/ivacaftor. Journal of Cystic Fibrosis, 23(3), 490–498. https://doi.org/10.1016/j.jcf.2024.02.015

Enaud, R., Lussac-Sorton, F., Charpentier, E., Velo-Suárez, L., Guiraud, J., Bui, S., Fayon, M., Schaeverbeke, T., Nikolski, M., Burgel, P.-R., Héry-Arnaud, G., & Delhaes, L. (2023). Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.02251-22

Gur, M., Bar-Yoseph, R., Hanna, M., Abboud, D., Keidar, Z., Palchan, T., Toukan, Y., Masarweh, K., Alisha, I., Zuckerman-Levin, N., & Bentur, L. (2023). Effect of Trikafta on bone density, body composition and exercise capacity in CF: A pilot study. Pediatric Pulmonology, 58(2), 577–584. https://doi.org/10.1002/ppul.26243

Hanssens, L. S., Duchateau, J., & Casimir, G. J. (2021). CFTR Protein: Not Just a Chloride Channel? Cells, 10(11), 2844. https://doi.org/10.3390/cells10112844

Lara-Reyna, S., Holbrook, J., Jarosz-Griffiths, H. H., Peckham, D., & McDermott, M. F. (2020). Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cellular and Molecular Life Sciences, 77(22), 4485–4503. https://doi.org/10.1007/s00018-020-03540-9

Loske, J., Völler, M., Lukassen, S., Stahl, M., Thürmann, L., Seegebarth, A., Röhmel, J., Wisniewski, S., Messingschlager, M., Lorenz, S., Klages, S., Eils, R., Lehmann, I., Mall, M. A., Graeber, S. Y., & Trump, S. (2024). Pharmacological Improvement of Cystic Fibrosis Transmembrane Conductance Regulator Function Rescues Airway Epithelial Homeostasis and Host Defense in Children with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 209(11), 1338–1350. https://doi.org/10.1164/rccm.202310-1836OC

Ostedgaard, L. S., Meyerholz, D. K., Chen, J.-H., Pezzulo, A. A., Karp, P. H., Rokhlina, T., Ernst, S. E., Hanfland, R. A., Reznikov, L. R., Ludwig, P. S., Rogan, M. P., Davis, G. J., Dohrn, C. L., Wohlford-Lenane, C., Taft, P. J., Rector, M. V., Hornick, E., Nassar, B. S., Samuel, M., … Stoltz, D. A. (2011). The Δ F508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis–Like Disease in Pigs. Science Translational Medicine, 3(74). https://doi.org/10.1126/scitranslmed.3001868

Parkins, M. D., Somayaji, R., & Waters, V. J. (2018). Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clinical Microbiology Reviews, 31(4). https://doi.org/10.1128/CMR.00019-18

Paterson, I., Johnson, C., & MacGregor, G. (2023). Tezacaftor-ivacaftor use in routine care of adults with cystic fibrosis: a medicine use evaluation. European Journal of Hospital Pharmacy, 30(3), 142–146. https://doi.org/10.1136/ejhpharm-2020-002676

Putman, M. S., Norris, A. W., Hull, R. L., Rickels, M. R., Sussel, L., Blackman, S. M., Chan, C. L., Ode, K. L., Daley, T., Stecenko, A. A., Moran, A., Helmick, M. J., Cray, S., Alvarez, J. A., Stallings, V. A., Tuggle, K. L., Clancy, J. P., Eggerman, T. L., Engelhardt, J. F., & Kelly, A. (2023). Cystic Fibrosis–Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes, 72(6), 677–689. https://doi.org/10.2337/db22-0949

Sagel, S. D., Khan, U., Heltshe, S. L., Clancy, J. P., Borowitz, D., Gelfond, D., Donaldson, S. H., Moran, A., Ratjen, F., VanDalfsen, J. M., & Rowe, S. M. (2021). Clinical Effectiveness of Lumacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for F508del-CFTR. A Clinical Trial. Annals of the American Thoracic Society, 18(1), 75–83. https://doi.org/10.1513/AnnalsATS.202002-144OC

Stastna, N., Kunovsky, L., Svoboda, M., Pokojova, E., Homola, L., Mala, M., Gracova, Z., Jerabkova, B., Skrickova, J., & Trna, J. (2024). Improved Nutritional Outcomes and Gastrointestinal Symptoms in Adult Cystic Fibrosis Patients Treated with Elexacaftor/Tezacaftor/Ivacaftor. Digestive Diseases, 42(4), 361–368. https://doi.org/10.1159/000538606

Tice, J. A., Kuntz, K. M., Wherry, K., Seidner, M., Rind, D. M., & Pearson, S. D. (2021). The effectiveness and value of novel treatments for cystic fibrosis. Journal of Managed Care & Specialty Pharmacy, 27(2), 276–280. https://doi.org/10.18553/jmcp.2021.27.2.276

Veit, G., Vaccarin, C., & Lukacs, G. L. (2021). Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR. Journal of Cystic Fibrosis, 20(5), 895–898. https://doi.org/10.1016/j.jcf.2021.03.011

Yaacoby-Bianu, K., Schnapp, Z., Koren, I., Ilivitzki, A., Khatib, M., Shorbaji, N., Shteinberg, M., & Livnat, G. (2022). Real life evaluation of the multi-organ effects of Lumacaftor/Ivacaftor on F508del homozygous cystic fibrosis patients. BMC Pharmacology and Toxicology, 23(1), 80. https://doi.org/10.1186/s40360-022-00624-z

Zaher, A., ElSaygh, J., Elsori, D., ElSaygh, H., & Sanni, A. (2021). A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus. https://doi.org/10.7759/cureus.16144

Downloads

Posted

2025-01-10

Categories