Understanding the Impact of Sox2, Notch1, Noggin, Shh, and BMP genes on the neurogenesis in Mus Musculus
DOI:
https://doi.org/10.58445/rars.2136Keywords:
Mus musculus, Regenerative Medicine, Stem Cells, Neural TissueAbstract
Most vertebrates and mammals, except for the African Spiny Mouse, cannot regenerate neural tissue. The African Spiny Mouse has an overexpression of Sox2, Notch1, Noggin, and Shh genes and an underexpression of BMP genes. In damaged neural tissue, the gene expression changes lead to macrophage concentration variations, leading to increased quantities of therapeutic proteins and growth factors such as Interleukin 10 and Transforming Growth Factor Beta (TGF-B), ultimately leading to neurogenesis. The question arises of whether or not the editing of these genes in injured normal house mice could lead to the regeneration of neurons in those mice. In order to conduct the experiments, African spiny mice and house mice will be given similar brain damage. Using adipose tissue and Yamanaka factors, induced pluripotent stem cells were created. The iPSCs were modified to express and under-express genes involved in neuronal regeneration. The modified iPSCs were then injected into the experimental group. After four weeks, cognitive function tests will be performed to determine if neurogenesis occurred. The mice’s brains would be extracted to see how the brain physiology had changed from the treatment. If neurogenesis is found, the next step would be to see what other animals can regenerate neurons using this therapeutic technique.
References
Aguirre, M., Escobar, M., Forero Amézquita, S., Cubillos, D., Rincón, C., Vanegas, P., Tarazona, M. P., Atuesta Escobar, S., Blanco, J. C., & Celis, L. G. (2023). Application of the Yamanaka Transcription Factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic. Genes, 14(9), 1697. https://doi.org/10.3390/genes14091697
AP Staining Kit User Manual Store 4°C on receipt. (n.d.). Retrieved August 16, 2024, from https://www.systembio.com/wp/wp-content/uploads/2020/10/Manual_APkit-1.pdf
Aztekin, C., & Storer, M. A. (2022). To regenerate or not to regenerate: Vertebrate model organisms of regeneration‐competency and ‐incompetency. Wound Repair and Regeneration. https://doi.org/10.1111/wrr.13000
Bagchi, D., Das, A., & Ray, S. (2020). Tissue Regeneration - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/medicine-and-dentistry/tissue-regeneration
C57BL/6 Mouse Adipose-Derived Mesenchymal Stem Cells. (2017). Cyagen.com. https://www.cyagen.com/us/en/product/c57bl6-adipose-derived-mesenchymal-stem-cells.html
Cargnello, M., & Roux, P. P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83. https://doi.org/10.1128/mmbr.00031-10
Center for Regenerative Biotherapeutics - Neuroregeneration. (n.d.). Mayo Clinic. https://www.mayo.edu/research/centers-programs/center-regenerative-biotherapeutics/focus-areas/neuroregeneration
Chen, C., Liu, T., Tang, Y., Luo, G., Liang, G., & He, W. (2023). Epigenetic regulation of macrophage polarization in wound healing. Burns & Trauma, 11. https://doi.org/10.1093/burnst/tkac057
Christos Patilas, Iordanis Varsamos, Galanis, A., Michail Vavourakis, Dimitrios Zachariou, Vasileios Marougklianis, Kolovos, I., Georgios Tsalimas, Panagiotis Karampinas, Angelos Kaspiris, Vlamis, J., & Spiros Pneumaticos. (2024). The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics, 14(2), 151–151. https://doi.org/10.3390/diagnostics14020151
Coloplast Professional. (n.d.). The role of the skin in wound healing. Www.coloplastprofessional.co.uk. https://www.coloplastprofessional.co.uk/education-library/knowledge/advanced-wound-care-knowledge/wound-healing/the-role-of-the-skin-in-wound-healing/
Gaire, J., Varholick, J. A., Rana, S., Sunshine, M. D., Doré, S., Barbazuk, W. B., Fuller, D. D., Maden, M., & Simmons, C. S. (2021). Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. Npj Regenerative Medicine, 6(1), 1–6. https://doi.org/10.1038/s41536-020-00111-1
Grigoryan, E. N. (2021). Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. Journal of Developmental Biology, 9(1), 2. https://doi.org/10.3390/jdb9010002
He, Z., He, J., & Xie, K. (2023). KLF4 transcription factor in tumorigenesis. Cell Death Discovery, 9(1), 1–13. https://doi.org/10.1038/s41420-023-01416-y
Hosseini, K., Lekholm, E., Ahemaiti, A., & Fredriksson, R. (2020). Differentiation of Human Embryonic Stem Cells into Neuron, Cholinergic, and Glial Cells. Stem Cells International, 2020, 1–9. https://doi.org/10.1155/2020/8827874
Introduction to Hippocampal Neurons | Lonza. (2014). Lonza.com. https://bioscience.lonza.com/lonza_bs/US/en/the-structure-function-and-research-application-of-the-hippocampus
Janak Gaire, Supper, V., Montgomery, D., & Simmons, C. S. (2023). Spiny mice (Acomys) cells fail to engraft in NOD scid gamma. PLOS ONE, 18(5), e0286000–e0286000. https://doi.org/10.1371/journal.pone.0286000
Kaiser, L. (2024). Most stem cells die after being injected into the brain. This new technique could change that. Www.buffalo.edu. https://www.buffalo.edu/news/releases/2024/06/stem-cell-therapy-MS.html
Kim, S. Y., & Nair, M. G. (2019). Macrophages in wound healing: activation and plasticity. Immunology and Cell Biology, 97(3), 258–267. https://doi.org/10.1111/imcb.12236
Lichtman, M. K., Otero-Vinas, M., & Falanga, V. (2016). Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair and Regeneration, 24(2), 215–222. https://doi.org/10.1111/wrr.12398
Liu, J., Saul, D., Böker, K. O., Ernst, J., Lehman, W., & Schilling, A. F. (2018). Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BioMed Research International, 2018, 1–11. https://doi.org/10.1155/2018/1984879
Ma, Y., Liu, Z., Miao, L., Jiang, X., Ruan, H., Xuan, R., & Xu, S. (2023). Mechanisms underlying pathological scarring by fibroblasts during wound healing. International Wound Journal. https://doi.org/10.1111/iwj.14097
Macrophages are necessary for epimorphic regeneration in African spiny mice. (2017, May 16). ELife; eLife. https://elifesciences.org/articles/24623
Maden, M., Serrano, N., Bermudez, M., & Sandoval, A. G. W. (2021). A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. Journal of Anatomy, 238(5), 1191–1202. https://doi.org/10.1111/joa.13373
McCusker, C., Bryant, S. V., & Gardiner, D. M. (2015). The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration, 2(2), 54–71. https://doi.org/10.1002/reg2.32
National Academies of Sciences, E., Division, H. and M., Services, B. on H. C., Policy, B. on H. S., Care, C. on A. P. in T. B. I. R. and, Matney, C., Bowman, K., & Berwick, D. (2022). The Scope and Burden of Traumatic Brain Injury. In www.ncbi.nlm.nih.gov. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK580076/
National Cancer Institute. (2011, February 2). https://www.cancer.gov/publications/dictionaries/cancer-terms/def/fibrous-connective-tissue. Www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/fibrous-connective-tissue
National Cancer Institute. (2019). Nervous Tissue | SEER Training. Cancer.gov. https://training.seer.cancer.gov/anatomy/cells_tissues_membranes/tissues/nervous.html
NCBI. (2024). BLAST: Basic Local Alignment Search Tool. Nih.gov. https://blast.ncbi.nlm.nih.gov/Blast.cgi
Nguyen, E. D., Gere, J., Bae, Y., Okamura, D. M., Collins, S. J., Houghtaling, S. R., Miller, D., Suh, K., Paquette, A. G., Beier, D. R., & Majesky, M. W. (2023). Profiling the Epigenetic Landscape of the African Spiny Mouse, A Mammalian Model of Kidney Regeneration: SA-PO333. Journal of the American Society of Nephrology, 34(11S), 815. https://doi.org/10.1681/ASN.20233411S1815a
Nguyen, E. D., Vahid Nikoonejad Fard, Kim, B., Collins, S., Galey, M., Nelson, B. R., Wakenight, P., Gable, S. M., McKenna, A., Bammler, T. K., MacDonald, J., Okamura, D. M., Shendure, J., Beier, D. R., Jan Marino Ramirez, Majesky, M. W., Millen, K. J., Tollis, M., & Miller, D. E. (2023). Chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus). BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.04.03.535372
Offord, C. (2024, March 28). Bone marrow transplants spread Alzheimer’s-like disease in mice, controversial study reports. Science; American Association for the Advancement of Science. https://www.science.org/content/article/bone-marrow-transplants-spread-alzheimer-s-disease-mice-controversial-study-reports
Okamura, D. M., Nguyen, E. D., Collins, S. J., Yoon, K., Gere, J. B., Weiser-Evans, M. C. M., Beier, D. R., & Majesky, M. W. (2023). Mammalian organ regeneration in spiny mice. Journal of Muscle Research and Cell Motility, 44(2), 39–52. https://doi.org/10.1007/s10974-022-09631-3
Prince, J., Faucheux, C., & Allen, S. (2005). 1 - Deer Antlers as a Model of Mammalian Regeneration. Elsevier. https://www.sciencedirect.com/science/article/pii/S0070215305670019
Riordon, D. R., & Boheler, K. R. (2017). Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry. Methods in Molecular Biology, 127–149. https://doi.org/10.1007/978-1-4939-7553-2_9
Salminen, A., Kaarniranta, K., & Kauppinen, A. (2024). Tissue fibroblasts are versatile immune regulators: an evaluation of their impact on the aging process. Ageing Research Reviews, 97, 102296–102296. https://doi.org/10.1016/j.arr.2024.102296
Scimone, M. L., Cloutier, J. K., Maybrun, C. L., & Reddien, P. W. (2022). The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nature Communications, 13(1), 2726. https://doi.org/10.1038/s41467-022-30412-6
Sekine, K., Tsuzuki, S., Yasui, R., Kobayashi, T., Ikeda, K., Hamada, Y., Kanai, E., Camp, J. G., Treutlein, B., Ueno, Y., Okamoto, S., & Taniguchi, H. (2020). Robust detection of undifferentiated iPSC among differentiated cells. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66845-6
Sidransky, E. (2022). Fibroblast. Genome.gov. https://www.genome.gov/genetics-glossary/Fibroblast
Stem Cell Reprogramming Tools | Thermo Fisher Scientific - UK. (2024). Thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/stem-cell-research/stem-cell-engineering-reprogramming.html
Tamura, K., Ohgo, S., & Yokoyama, H. (2009). Limb blastema cell: A stem cell for morphological regeneration. Development, Growth & Differentiation, 52(1), 89–99. https://doi.org/10.1111/j.1440-169x.2009.01144.x
Thermo Fisher Scientific. (2024). Fluorescent Secondary Antibodies - US. Www.thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/antibodies/secondary-antibodies/fluorescent-secondary-antibodies.html
Tomasso, A., Disela, V., Longaker, M. T., & Bartscherer, K. (2024). Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Current Opinion in Genetics & Development, 87, 102228–102228. https://doi.org/10.1016/j.gde.2024.102228
Van Erum, J., Van Dam, D., & De Deyn, P. P. (2019). PTZ-induced seizures in mice require a revised Racine scale. Epilepsy & Behavior, 95, 51–55. https://doi.org/10.1016/j.yebeh.2019.02.029
Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116
Wolfgang, M. J., & Golos, T. G. (2002). Nonhuman primate transgenesis: progress and prospects. Trends in Biotechnology, 20(11), 479–484. https://doi.org/10.1016/s0167-7799(02)02052-8
Wynn, T. A., & Vannella, K. M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3), 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
Yoon, A-Rum., Hong, J., & Yun, C.-O. (2015). A vesicular stomatitis virus glycoprotein epitope-incorporated oncolytic adenovirus overcomes CAR-dependency and shows markedly enhanced cancer cell killing and suppression of tumor growth. Oncotarget, 6(33), 34875–34891. https://doi.org/10.18632/oncotarget.5332
Zeng, C.-W., & Zhang, C.-L. (2023). Neuronal regeneration after injury: a new perspective on gene therapy. Frontiers in Neuroscience, 17, 1181816. https://doi.org/10.3389/fnins.2023.1181816
Zhao, A., Qin, H., & Fu, X. (2016). What Determines the Regenerative Capacity in Animals? BioScience, 66(9), 735–746. https://doi.org/10.1093/biosci/biw079
Downloads
Posted
License
Copyright (c) 2025 Sarvesh Satheesh Kumar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.