Preprint / Version 1

Understanding the Impact of Sox2, Notch1, Noggin, Shh, and BMP genes on the neurogenesis in Mus Musculus

##article.authors##

  • Sarvesh Satheesh Kumar Jefferson Academy Secondary School

DOI:

https://doi.org/10.58445/rars.2136

Keywords:

Mus musculus, Regenerative Medicine, Stem Cells, Neural Tissue

Abstract

Most vertebrates and mammals, except for the African Spiny Mouse, cannot regenerate neural tissue. The African Spiny Mouse has an overexpression of Sox2, Notch1, Noggin, and Shh genes and an underexpression of BMP genes. In damaged neural tissue, the gene expression changes lead to macrophage concentration variations, leading to increased quantities of therapeutic proteins and growth factors such as Interleukin 10 and Transforming Growth Factor Beta (TGF-B), ultimately leading to neurogenesis. The question arises of whether or not the editing of these genes in injured normal house mice could lead to the regeneration of neurons in those mice. In order to conduct the experiments, African spiny mice and house mice will be given similar brain damage. Using adipose tissue and Yamanaka factors, induced pluripotent stem cells were created. The iPSCs were modified to express and under-express genes involved in neuronal regeneration. The modified iPSCs were then injected into the experimental group. After four weeks, cognitive function tests will be performed to determine if neurogenesis occurred. The mice’s brains would be extracted to see how the brain physiology had changed from the treatment. If neurogenesis is found, the next step would be to see what other animals can regenerate neurons using this therapeutic technique.

References

Aguirre, M., Escobar, M., Forero Amézquita, S., Cubillos, D., Rincón, C., Vanegas, P., Tarazona, M. P., Atuesta Escobar, S., Blanco, J. C., & Celis, L. G. (2023). Application of the Yamanaka Transcription Factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic. Genes, 14(9), 1697. https://doi.org/10.3390/genes14091697

AP Staining Kit User Manual Store 4°C on receipt. (n.d.). Retrieved August 16, 2024, from https://www.systembio.com/wp/wp-content/uploads/2020/10/Manual_APkit-1.pdf

Aztekin, C., & Storer, M. A. (2022). To regenerate or not to regenerate: Vertebrate model organisms of regeneration‐competency and ‐incompetency. Wound Repair and Regeneration. https://doi.org/10.1111/wrr.13000

Bagchi, D., Das, A., & Ray, S. (2020). Tissue Regeneration - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/medicine-and-dentistry/tissue-regeneration

C57BL/6 Mouse Adipose-Derived Mesenchymal Stem Cells. (2017). Cyagen.com. https://www.cyagen.com/us/en/product/c57bl6-adipose-derived-mesenchymal-stem-cells.html

Cargnello, M., & Roux, P. P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83. https://doi.org/10.1128/mmbr.00031-10

Center for Regenerative Biotherapeutics - Neuroregeneration. (n.d.). Mayo Clinic. https://www.mayo.edu/research/centers-programs/center-regenerative-biotherapeutics/focus-areas/neuroregeneration

Chen, C., Liu, T., Tang, Y., Luo, G., Liang, G., & He, W. (2023). Epigenetic regulation of macrophage polarization in wound healing. Burns & Trauma, 11. https://doi.org/10.1093/burnst/tkac057

Christos Patilas, Iordanis Varsamos, Galanis, A., Michail Vavourakis, Dimitrios Zachariou, Vasileios Marougklianis, Kolovos, I., Georgios Tsalimas, Panagiotis Karampinas, Angelos Kaspiris, Vlamis, J., & Spiros Pneumaticos. (2024). The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics, 14(2), 151–151. https://doi.org/10.3390/diagnostics14020151

Coloplast Professional. (n.d.). The role of the skin in wound healing. Www.coloplastprofessional.co.uk. https://www.coloplastprofessional.co.uk/education-library/knowledge/advanced-wound-care-knowledge/wound-healing/the-role-of-the-skin-in-wound-healing/

Gaire, J., Varholick, J. A., Rana, S., Sunshine, M. D., Doré, S., Barbazuk, W. B., Fuller, D. D., Maden, M., & Simmons, C. S. (2021). Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. Npj Regenerative Medicine, 6(1), 1–6. https://doi.org/10.1038/s41536-020-00111-1

Grigoryan, E. N. (2021). Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. Journal of Developmental Biology, 9(1), 2. https://doi.org/10.3390/jdb9010002

He, Z., He, J., & Xie, K. (2023). KLF4 transcription factor in tumorigenesis. Cell Death Discovery, 9(1), 1–13. https://doi.org/10.1038/s41420-023-01416-y

Hosseini, K., Lekholm, E., Ahemaiti, A., & Fredriksson, R. (2020). Differentiation of Human Embryonic Stem Cells into Neuron, Cholinergic, and Glial Cells. Stem Cells International, 2020, 1–9. https://doi.org/10.1155/2020/8827874

Introduction to Hippocampal Neurons | Lonza. (2014). Lonza.com. https://bioscience.lonza.com/lonza_bs/US/en/the-structure-function-and-research-application-of-the-hippocampus

Janak Gaire, Supper, V., Montgomery, D., & Simmons, C. S. (2023). Spiny mice (Acomys) cells fail to engraft in NOD scid gamma. PLOS ONE, 18(5), e0286000–e0286000. https://doi.org/10.1371/journal.pone.0286000

Kaiser, L. (2024). Most stem cells die after being injected into the brain. This new technique could change that. Www.buffalo.edu. https://www.buffalo.edu/news/releases/2024/06/stem-cell-therapy-MS.html

Kim, S. Y., & Nair, M. G. (2019). Macrophages in wound healing: activation and plasticity. Immunology and Cell Biology, 97(3), 258–267. https://doi.org/10.1111/imcb.12236

Lichtman, M. K., Otero-Vinas, M., & Falanga, V. (2016). Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair and Regeneration, 24(2), 215–222. https://doi.org/10.1111/wrr.12398

Liu, J., Saul, D., Böker, K. O., Ernst, J., Lehman, W., & Schilling, A. F. (2018). Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BioMed Research International, 2018, 1–11. https://doi.org/10.1155/2018/1984879

Ma, Y., Liu, Z., Miao, L., Jiang, X., Ruan, H., Xuan, R., & Xu, S. (2023). Mechanisms underlying pathological scarring by fibroblasts during wound healing. International Wound Journal. https://doi.org/10.1111/iwj.14097

Macrophages are necessary for epimorphic regeneration in African spiny mice. (2017, May 16). ELife; eLife. https://elifesciences.org/articles/24623

Maden, M., Serrano, N., Bermudez, M., & Sandoval, A. G. W. (2021). A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. Journal of Anatomy, 238(5), 1191–1202. https://doi.org/10.1111/joa.13373

McCusker, C., Bryant, S. V., & Gardiner, D. M. (2015). The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration, 2(2), 54–71. https://doi.org/10.1002/reg2.32

National Academies of Sciences, E., Division, H. and M., Services, B. on H. C., Policy, B. on H. S., Care, C. on A. P. in T. B. I. R. and, Matney, C., Bowman, K., & Berwick, D. (2022). The Scope and Burden of Traumatic Brain Injury. In www.ncbi.nlm.nih.gov. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK580076/

National Cancer Institute. (2011, February 2). https://www.cancer.gov/publications/dictionaries/cancer-terms/def/fibrous-connective-tissue. Www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/fibrous-connective-tissue

National Cancer Institute. (2019). Nervous Tissue | SEER Training. Cancer.gov. https://training.seer.cancer.gov/anatomy/cells_tissues_membranes/tissues/nervous.html

NCBI. (2024). BLAST: Basic Local Alignment Search Tool. Nih.gov. https://blast.ncbi.nlm.nih.gov/Blast.cgi

Nguyen, E. D., Gere, J., Bae, Y., Okamura, D. M., Collins, S. J., Houghtaling, S. R., Miller, D., Suh, K., Paquette, A. G., Beier, D. R., & Majesky, M. W. (2023). Profiling the Epigenetic Landscape of the African Spiny Mouse, A Mammalian Model of Kidney Regeneration: SA-PO333. Journal of the American Society of Nephrology, 34(11S), 815. https://doi.org/10.1681/ASN.20233411S1815a

Nguyen, E. D., Vahid Nikoonejad Fard, Kim, B., Collins, S., Galey, M., Nelson, B. R., Wakenight, P., Gable, S. M., McKenna, A., Bammler, T. K., MacDonald, J., Okamura, D. M., Shendure, J., Beier, D. R., Jan Marino Ramirez, Majesky, M. W., Millen, K. J., Tollis, M., & Miller, D. E. (2023). Chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus). BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.04.03.535372

Offord, C. (2024, March 28). Bone marrow transplants spread Alzheimer’s-like disease in mice, controversial study reports. Science; American Association for the Advancement of Science. https://www.science.org/content/article/bone-marrow-transplants-spread-alzheimer-s-disease-mice-controversial-study-reports

Okamura, D. M., Nguyen, E. D., Collins, S. J., Yoon, K., Gere, J. B., Weiser-Evans, M. C. M., Beier, D. R., & Majesky, M. W. (2023). Mammalian organ regeneration in spiny mice. Journal of Muscle Research and Cell Motility, 44(2), 39–52. https://doi.org/10.1007/s10974-022-09631-3

Prince, J., Faucheux, C., & Allen, S. (2005). 1 - Deer Antlers as a Model of Mammalian Regeneration. Elsevier. https://www.sciencedirect.com/science/article/pii/S0070215305670019

Riordon, D. R., & Boheler, K. R. (2017). Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry. Methods in Molecular Biology, 127–149. https://doi.org/10.1007/978-1-4939-7553-2_9

Salminen, A., Kaarniranta, K., & Kauppinen, A. (2024). Tissue fibroblasts are versatile immune regulators: an evaluation of their impact on the aging process. Ageing Research Reviews, 97, 102296–102296. https://doi.org/10.1016/j.arr.2024.102296

Scimone, M. L., Cloutier, J. K., Maybrun, C. L., & Reddien, P. W. (2022). The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nature Communications, 13(1), 2726. https://doi.org/10.1038/s41467-022-30412-6

Sekine, K., Tsuzuki, S., Yasui, R., Kobayashi, T., Ikeda, K., Hamada, Y., Kanai, E., Camp, J. G., Treutlein, B., Ueno, Y., Okamoto, S., & Taniguchi, H. (2020). Robust detection of undifferentiated iPSC among differentiated cells. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66845-6

Sidransky, E. (2022). Fibroblast. Genome.gov. https://www.genome.gov/genetics-glossary/Fibroblast

Stem Cell Reprogramming Tools | Thermo Fisher Scientific - UK. (2024). Thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/stem-cell-research/stem-cell-engineering-reprogramming.html

Tamura, K., Ohgo, S., & Yokoyama, H. (2009). Limb blastema cell: A stem cell for morphological regeneration. Development, Growth & Differentiation, 52(1), 89–99. https://doi.org/10.1111/j.1440-169x.2009.01144.x

Thermo Fisher Scientific. (2024). Fluorescent Secondary Antibodies - US. Www.thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/antibodies/secondary-antibodies/fluorescent-secondary-antibodies.html

Tomasso, A., Disela, V., Longaker, M. T., & Bartscherer, K. (2024). Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Current Opinion in Genetics & Development, 87, 102228–102228. https://doi.org/10.1016/j.gde.2024.102228

Van Erum, J., Van Dam, D., & De Deyn, P. P. (2019). PTZ-induced seizures in mice require a revised Racine scale. Epilepsy & Behavior, 95, 51–55. https://doi.org/10.1016/j.yebeh.2019.02.029

Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116

Wolfgang, M. J., & Golos, T. G. (2002). Nonhuman primate transgenesis: progress and prospects. Trends in Biotechnology, 20(11), 479–484. https://doi.org/10.1016/s0167-7799(02)02052-8

Wynn, T. A., & Vannella, K. M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3), 450–462. https://doi.org/10.1016/j.immuni.2016.02.015

Yoon, A-Rum., Hong, J., & Yun, C.-O. (2015). A vesicular stomatitis virus glycoprotein epitope-incorporated oncolytic adenovirus overcomes CAR-dependency and shows markedly enhanced cancer cell killing and suppression of tumor growth. Oncotarget, 6(33), 34875–34891. https://doi.org/10.18632/oncotarget.5332

Zeng, C.-W., & Zhang, C.-L. (2023). Neuronal regeneration after injury: a new perspective on gene therapy. Frontiers in Neuroscience, 17, 1181816. https://doi.org/10.3389/fnins.2023.1181816

Zhao, A., Qin, H., & Fu, X. (2016). What Determines the Regenerative Capacity in Animals? BioScience, 66(9), 735–746. https://doi.org/10.1093/biosci/biw079

Downloads

Posted

2025-01-08