Classification of Mild, Very Mild, Moderate, and Non-Demented Alzheimer’s Disease MRI Scans with SVM
DOI:
https://doi.org/10.58445/rars.1987Keywords:
Alzheimer’s, MRI Scans, Machine Learning, Support Vector Machine, OASISAbstract
Over 55 million people worldwide are affected by Alzheimer's disease (AD), which causes a substantial financial impact on society. The estimated expenses of health care and long-term care for individuals with forms of dementia are expected to approach around $360 billion in 2024. Recent developments in neuroimaging have yielded important insights into AD. Machine learning (ML) methods have become widely available as effective instruments for interpreting complex neuroimaging data. Previous studies on classifying magnetic resonance imaging (MRI) images found significant success in identifying neurological disorders. In this study, supervised learning is employed to investigate if ML models can distinguish between mild dementia, moderate dementia, very mild Dementia, and non-demented MRI images. The dataset was sourced from the Open Access Series of Imaging Studies (OASIS), a publicly available dataset that provides cross-sectional and longitudinal MRI data of the brain. We trained a linear support vector machine (SVM) classifier with stochastic gradient descent (SGD) on 75% of the dataset. To evaluate performance, we calculated the accuracy level from the testing data. This model produced an accuracy of 74.21%, demonstrating that SVM classification is a promising avenue to classify MRI images.
References
Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature Reviews Disease Primers, 1(1), 15056. https://doi.org/10.1038/nrdp.2015.56
Grossberg, G. T. (2003). Diagnosis and Treatment of Alzheimer’s Disease.
Amini, M., Pedram, M. M., Moradi, A., Jamshidi, M., & Ouchani, M. (2021). Single and Combined Neuroimaging Techniques for Alzheimer’s Disease Detection. Computational Intelligence and Neuroscience, 2021(1), 9523039. https://doi.org/10.1155/2021/9523039
Joshi, K. K., Joshi, N., & Chaudhari, R. R. (2020). Machine Learning—Learning Techniques, CNN, Languages and APIs. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 23–30. https://doi.org/10.32628/CSEIT2062164
Buratti, L., Balestrini, S., Altamura, C., Viticchi, G., Falsetti, L., Luzzi, S., Provinciali, L., Vernieri, F., & Silvestrini, M. (2015). Markers for the Risk of Progression from Mild Cognitive Impairment to Alzheimer’s Disease. Journal of Alzheimer’s Disease, 45(3), 883–890. https://doi.org/10.3233/JAD-143135
Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Cedarbaum, J., Donohue, M. C., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L., Thompson, P. M., Toga, A. W., Trojanowski, J. Q., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014. Alzheimer’s & Dementia, 11(7), 865–884. https://doi.org/10.1016/j.jalz.2015.04.005
Rowe, C. C., Bourgeat, P., Ellis, K. A., Brown, B., Lim, Y. Y., Mulligan, R., Jones, G., Maruff, P., Woodward, M., Price, R., Robins, P., Tochon‐Danguy, H., O’Keefe, G., Pike, K. E., Yates, P., Szoeke, C., Salvado, O., Macaulay, S. L., O’Meara, T., … Villemagne, V. L. (2013). Predicting Alzheimer disease with β‐amyloid imaging: Results from the Australian imaging, biomarkers, and lifestyle study of ageing. Annals of Neurology, 74(6), 905–913. https://doi.org/10.1002/ana.24040
Basheer, S., Bhatia, S., & Sakri, S. B. (2021). Computational Modeling of Dementia Prediction Using Deep Neural Network: Analysis on OASIS Dataset. IEEE Access, 9, 42449–42462. https://doi.org/10.1109/ACCESS.2021.3066213
M.Dessouky, M., A. Elrashidy, M., & M. Abdelkader, H. (2013). Selecting and Extracting Effective Features for Automated Diagnosis of Alzheimer’s Disease. International Journal of Computer Applications, 81(4), 17–28. https://doi.org/10.5120/14000-2039
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. Journal of Cognitive Neuroscience, 19(9), 1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498
Aithal, Ninad. (2023). OASIS Alzheimer’s Detection. https://www.kaggle.com/datasets/ninadaithal/imagesoasis/data
Ruiz, Ruiz, E., Ramírez, J., Górriz, J. M., & Casillas, J. (2018). Alzheimer’s Disease Computer-Aided Diagnosis: Histogram-Based Analysis of Regional MRI Volumes for Feature Selection and Classification. Journal of Alzheimer’s Disease, 65(3), 819–842. https://doi.org/10.3233/JAD-170514
Bari Antor, M., Jamil, A. H. M. S., Mamtaz, M., Monirujjaman Khan, M., Aljahdali, S., Kaur, M., Singh, P., & Masud, M. (2021). A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease. Journal of Healthcare Engineering, 2021, 1–12. https://doi.org/10.1155/2021/9917919
Baglat, P., Salehi, A. W., Gupta, A., & Gupta, G. (2020). Multiple Machine Learning Models for Detection of Alzheimer’s Disease Using OASIS Dataset. In S. K. Sharma, Y. K. Dwivedi, B. Metri, & N. P. Rana (Eds.), Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation (Vol. 617, pp. 614–622). Springer International Publishing. https://doi.org/10.1007/978-3-030-64849-7_54
Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2021). Deep Learning Type Convolution Neural Network Architecture for Multiclass Classification of Alzheimer’s Disease: Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, 209–215. https://doi.org/10.5220/0010378602090215
Downloads
Posted
Categories
License
Copyright (c) 2024 Anvita Vengala
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.