Preprint / Version 1

Transcriptomic Evolution of Neuronal Cell Classes and Cell Types in Human, Chimpanzee, and Rat

##article.authors##

  • Leo Dai Los Gatos High School

DOI:

https://doi.org/10.58445/rars.1934

Keywords:

RNA sequencing, Machine learning, Molecular analysis, Motor cortex

Abstract

The primary (M1) motor cortex is a highly conserved part of the mammalian brain, responsible for the direct control of voluntary muscles. While it is known that different species have differently structured motor cortices due to their unique needs and evolution, there is little knowledge on the cross-species differences between motor cortex cell types at the molecular level, and no comparison of humans with our closest living relatives, chimpanzees. A cross-species molecular level understanding of the M1 cortex would reveal the development of specific cell types and genes in line with evolutionary progression in motor skills. Using single nucleus RNA sequencing(snRNA-seq) on samples gathered from humans, rats, and chimpanzees, this research identified over 50 excitatory neuron cell types in three species, differences in (celltype/subclass proportions, marker genes, and some potentially unidentified cell types) These results point to the existence of Layer 4-like excitatory neurons in primates. In addition, human specific cell types were rich in genes in pathways implicated in ADHD and autism.

References

Anita, T. (2009). An Overview on the Genetics of ADHD: An Overview on the Genetics of ADHD. Acta Psychologica Sinica, 40(10), 1088–1098. https://doi.org/10.3724/SP.J.1041.2008.01088

Bakken, T. E., Jorstad, N. L., Hu, Q., Lake, B. B., Tian, W., Kalmbach, B. E., Crow, M., Hodge, R. D., Krienen, F. M., Sorensen, S. A., Eggermont, J., Yao, Z., Aevermann, B. D., Aldridge, A. I., Bartlett, A., Bertagnolli, D., Casper, T., Castanon, R. G., Crichton, K., … Lein, E. S. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598(7879), 111–119. https://doi.org/10.1038/s41586-021-03465-8

Bopp, R., Holler-Rickauer, S., Martin, K. A. C., & Schuhknecht, G. F. P. (2017). An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. The Journal of Neuroscience, 37(9), 2435–2448. https://doi.org/10.1523/JNEUROSCI.2557-16.2017

Galdos, F. X., Xu, S., Goodyer, W. R., Duan, L., Huang, Y. V., Lee, S., Zhu, H., Lee, C., Wei, N., Lee, D., & Wu, S. M. (2022). devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data. Nature Communications, 13(1), 5271. https://doi.org/10.1038/s41467-022-33045-x

Genovese, A., & Butler, M. G. (2023). The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations. Genes, 14(3), 677. https://doi.org/10.3390/genes14030677

Goralski, T. M., Meyerdirk, L., Breton, L., Brasseur, L., Kurgat, K., DeWeerd, D., Turner, L., Becker, K., Adams, M., Newhouse, D. J., & Henderson, M. X. (2024). Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nature Communications, 15(1), 2642. https://doi.org/10.1038/s41467-024-47027-8

Harrison, P. W., Amode, M. R., Austine-Orimoloye, O., Azov, A. G., Barba, M., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B., Campbell, L. I., Martinez, M. C., Charkhchi, M., Chougule, K., … Yates, A. D. (2024). Ensembl 2024. Nucleic Acids Research, 52(D1), D891–D899. https://doi.org/10.1093/nar/gkad1049

Kharchenko, P. V. (2021). The triumphs and limitations of computational methods for scRNA-seq. Nature Methods, 18(7), 723–732. https://doi.org/10.1038/s41592-021-01171-x

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P., & Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods, 16(12), 1289–1296. https://doi.org/10.1038/s41592-019-0619-0

Nguyen, H. C. T., Baik, B., Yoon, S., Park, T., & Nam, D. (2023). Benchmarking integration of single-cell differential expression. Nature Communications, 14(1), 1570. https://doi.org/10.1038/s41467-023-37126-3

Patterson, P. H. (2011). Modeling Autistic Features in Animals: Pediatric Research, 69(5 Part 2), 34R-40R. https://doi.org/10.1203/PDR.0b013e318212b80f

Sakate, R., Osada, N., Hida, M., Sugano, S., Hayasaka, I., Shimohira, N., Yanagi, S., Suto, Y., Hashimoto, K., & Hirai, M. (2003). Analysis of 5′-End Sequences of Chimpanzee cDNAs. Genome Research, 13(5), 1022–1026. https://doi.org/10.1101/gr.783103

Saygili, G., & OzgodeYigin, B. (2023). Continual learning approaches for single cell RNA sequencing data. Scientific Reports, 13(1), 15286. https://doi.org/10.1038/s41598-023-42482-7

Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: Predictive coding in the motor cortex. Trends in Neurosciences, 36(12), 706–716. https://doi.org/10.1016/j.tins.2013.09.004

Tiira, K., Hakosalo, O., Kareinen, L., Thomas, A., Hielm-Björkman, A., Escriou, C., Arnold, P., & Lohi, H. (2012). Environmental Effects on Compulsive Tail Chasing in Dogs. PLoS ONE, 7(7), e41684. https://doi.org/10.1371/journal.pone.0041684

Wolf, F. A., Angerer, P., & Theis, F. J. (2018). SCANPY: Large-scale single-cell gene expression data analysis. Genome Biology, 19(1), 15. https://doi.org/10.1186/s13059-017-1382-0

Wolock, S. L., Lopez, R., & Klein, A. M. (2018). Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Bioinformatics. https://doi.org/10.1101/357368

Yamawaki, N., Borges, K., Suter, B. A., Harris, K. D., & Shepherd, G. M. G. (2014). A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. eLife, 3, e05422. https://doi.org/10.7554/eLife.05422

Downloads

Posted

2024-11-05