How can CRISPR technologies be used to treat patients with sickle cell disorder?
DOI:
https://doi.org/10.58445/rars.1916Keywords:
CRISPR , sickle cell disorder, blood disorderAbstract
Sickle cell disease (SCD) is a severe, hereditary blood disorder characterized by abnormally
shaped hemoglobin leading to red blood cells that are crescent or sickle shaped. This abnormal
shape causes the red blood cells to become rigid, sticky, and obstructs capillary blood flow. SCD
causes chronic pain, anemia, pain crises, and serious conditions such as organ damage and
higher susceptibility to infections. There are about 8 million SCD patients around the globe, 80%
of which are in the Sub-Saharan Africa region. Children ages 5 years or younger diagnosed with
SCD have a 50%-80% mortality rate (GBD 2021 Sickle Cell Disease Collaborators, 2023).
Although there have been advancements in potential treatments including hydroxyurea, bone
marrow transplant, and blood transfusions, a complete or definitive treatment has still not been
found. The treatments available today, however, can only alleviate the symptoms of SCD, and
not the gene defect which causes the disease. The understanding of the CRISPR-Cas9 system
began as an immune defense mechanism of bacteria and archaea against viral and other
mobile genetic elements. This powerful technology for gene editing can have a tremendous
positive impact when used to correct genetic mutations that are caused by SCD. Early studies
and clinical trials have shown that CRISPR based therapies are capable of genetically modifying
hematopoietic stem cells to generate healthy red blood cells which brings the possibility of such
intervention as a potential cure for SCD. It’s anticipated that with further investment in research
in this field, the treatment of SCD will almost be eradicated and the mortality rates caused by
SCD could be remarkably reduced, potentially saving millions of lives.
References
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., & Liu, D. R. (2020).
Search-and-replace genome editing without double-strand breaks or donor DNA. Nature,
(7785), 149-157. https://doi.org/10.1038/s41586-019-1711-4
Ballas, S. K., & Darbari, D. S. (2020). Review/overview of pain in sickle cell disease.
Complementary therapies in medicine, 49, 102327.
https://doi.org/10.1016/j.ctim.2020.102327
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A.,
& Horvath, P. (2007). CRISPR provides acquired resistance against viruses in
prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712.
https://doi.org/10.1126/science.1138140
Centers for Disease Control and Prevention. (2024, October 3). Prevention and treatment of
SCD Complications. Centers for Disease Control and Prevention.
https://www.cdc.gov/sickle-cell/about/prevention-and-treatment.html
Coller B. S. (2019). Ethics of Human Genome Editing. Annual review of medicine, 70, 289–305.
https://doi.org/10.1146/annurev-med-112717-094629
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W.,
Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas
systems. Science (New York, N.Y.), 339(6121), 819–823.
https://doi.org/10.1126/science.1231143
CRISPR Therapeutics. (n.d.). Gene editing. CRISPR Therapeutics AG.
https://crisprtx.com/gene-editing
Demirci, S., Leonard, A., Haro-Mora, J. J., Uchida, N., & Tisdale, J. F. (2019). CRISPR/Cas9 for
Sickle Cell Disease: Applications, Future Possibilities, and Challenges. Advances in
experimental medicine and biology, 1144, 37–52. https://doi.org/10.1007/5584_2018_331
Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E.,
Pavel-Dinu, M., Saxena, N., Wilkens, A. B., Mantri, S., Uchida, N., Hendel, A., Narla, A.,
Majeti, R., Weinberg, K. I., & Porteus, M. H. (2016). CRISPR/Cas9 β-globin gene
targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.
https://doi.org/10.1038/nature20134
DeWitt, M. A., Magis, W., Bray, N. L., Wang, T., Berman, J. R., Urbinati, F., Heo, S. J., Mitros, T.,
Muñoz, D. P., Boffelli, D., Kohn, D. B., Walters, M. C., Carroll, D., Martin, D. I., & Corn, J.
E. (2016). Selection-free genome editing of the sickle mutation in human adult
hematopoietic stem/progenitor cells. Science translational medicine, 8(360), 360ra134.
https://doi.org/10.1126/scitranslmed.aaf9336
DeWitt, M. A., Corn, J. E., & Carroll, D. (2017). Genome editing via delivery of Cas9
ribonucleoprotein. Methods (San Diego, Calif.), 121-122, 9–15.
https://doi.org/10.1016/j.ymeth.2017.04.003
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., Foell, J., de
la Fuente, J., Grupp, S., Handgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A.,
Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., de Montalembert, M., Rondelli,
D., Sharma, A., ... Corbacioglu, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell
Disease and β-Thalassemia. The New England journal of medicine, 384(3), 252–260.
https://doi.org/10.1056/NEJMoa2031054
GBD 2021 Sickle Cell Disease Collaborators (2023). Global, regional, and national prevalence
and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the
Global Burden of Disease Study 2021. The Lancet. Haematology, 10(8), e585–e599.
https://doi.org/10.1016/S2352-3026(23)00118-7
Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers in
bioengineering and biotechnology, 11, 1143157.
https://doi.org/10.3389/fbioe.2023.1143157
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9
for genome engineering. Cell, 157(6), 1262–1278.
https://doi.org/10.1016/j.cell.2014.05.010
Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L., & Cheng, L.
(2015). Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes
Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation.
Stem cells (Dayton, Ohio), 33(5), 1470–1479. https://doi.org/10.1002/stem.1969
Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with a
Mysterious Repeated Sequence to Genome Editing Technology. Journal of bacteriology,
(7), e00580-17. https://doi.org/10.1128/JB.00580-17
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science (New York, N.Y.), 337(6096), 816–821. https://doi.org/10.1126/science.1225829
La Russa, M. F., & Qi, L. S. (2015). The New State of the Art: Cas9 for Gene Activation and
Repression. Molecular and cellular biology, 35(22), 3800–3809.
https://doi.org/10.1128/MCB.00512-15
Martyn, G. E., Wienert, B., Yang, L., Shah, M., Norton, L. J., Burdach, J., Kurita, R., Nakamura,
Y., Pearson, R. C. M., Funnell, A. P. W., Quinlan, K. G. R., & Crossley, M. (2018). Natural
regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A
binding. Nature genetics, 50(4), 498–503. https://doi.org/10.1038/s41588-018-0085-0
Memi, F., Ntokou, A., & Papangeli, I. (2018). CRISPR/Cas9 gene-editing: Research
technologies, clinical applications and ethical considerations. Seminars in perinatology,
(8), 487–500. https://doi.org/10.1053/j.semperi.2018.09.003
National Health Service UK. (2022, November 30). Sickle cell disease. NHS UK.
https://www.nhs.uk/conditions/sickle-cell-disease
National Heart Lung and Blood Institute. (2024, September 30). Sickle cell disease. National
Institutes of Health. U.S. Department of Health and Human Services.
https://www.nhlbi.nih.gov/health/sickle-cell-disease
Newby, G. A., Yen, J. S., Woodard, K. J., Mayuranathan, T., Lazzarotto, C. R., Li, Y.,
Sheppard-Tillman, H., Porter, S. N., Yao, Y., Mayberry, K., Everette, K. A., Jang, Y.,
Podracky, C. J., Thaman, E., Lechauve, C., Sharma, A., Henderson, J. M., Richter, M. F.,
Zhao, K. T., Miller, S. M., ... Liu, D. R. (2021). Base editing of haematopoietic stem cells
rescues sickle cell disease in mice. Nature, 595(7866), 295–302.
https://doi.org/10.1038/s41586-021-03609-w
Niihara, Y., Miller, S. T., Kanter, J., Lanzkron, S., Smith, W. R., Hsu, L. L., Gordeuk, V. R.,
Viswanathan, K., Sarnaik, S., Osunkwo, I., Guillaume, E., Sadanandan, S., Sieger, L.,
Lasky, J. L., Panosyan, E. H., Blake, O. A., New, T. N., Bellevue, R., Tran, L. T., Razon,
R. L., ... Investigators of the Phase 3 Trial of l-Glutamine in Sickle Cell Disease (2018). A
Phase 3 Trial of l-Glutamine in Sickle Cell Disease. The New England journal of
medicine, 379(3), 226–235. https://doi.org/10.1056/NEJMoa1715971
Park, S. H., & Bao, G. (2021). CRISPR/Cas9 gene editing for curing sickle cell disease.
Transfusion and apheresis science : official journal of the World Apheresis Association :
official journal of the European Society for Haemapheresis, 60(1), 103060.
https://doi.org/10.1016/j.transci.2021.103060
Ribeil, J. A., Hacein-Bey-Abina, S., Payen, E., Magnani, A., Semeraro, M., Magrin, E.,
Caccavelli, L., Neven, B., Bourget, P., El Nemer, W., Bartolucci, P., Weber, L., Puy, H.,
Meritet, J. F., Grevent, D., Beuzard, Y., Chrétien, S., Lefebvre, T., Ross, R. W., Negre, O.,
... Cavazzana, M. (2017). Gene Therapy in a Patient with Sickle Cell Disease. The New
England journal of medicine, 376(9), 848–855. https://doi.org/10.1056/NEJMoa1609677
University of California, San Francisco. (2022, February 15). CRISPR technology shows
promise as a cure for sickle cell disease. UCSF News.
https://www.ucsf.edu/news/2022/02/422856/crispr-technology-shows-promise-cure-sickle
-cell-disease
U.S. Food and Drug Administration. (2019, November 15). FDA approves crizanlizumab-TMCA
for sickle cell disease. Center for Drug Evaluation and Research.
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizanlizu
mab-tmca-sickle-cell-disease
Wu, Y., Zeng, J., Roscoe, B. P., Liu, P., Yao, Q., Lazzarotto, C. R., Clement, K., Cole, M. A., Luk,
K., Baricordi, C., Shen, A. H., Ren, C., Esrick, E. B., Manis, J. P., Dorfman, D. M.,
Williams, D. A., Biffi, A., Brugnara, C., Biasco, L., Brendel, C., ... Bauer, D. E. (2019).
Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature
medicine, 25(5), 776–783. https://doi.org/10.1038/s41591-019-0401-y
Yin, H., Song, C. Q., Dorkin, J. R., Zhu, L. J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S.,
Bizhanova, A., Gupta, A., Bolukbasi, M. F., Walsh, S., Bogorad, R. L., Gao, G., Weng, Z.,
Dong, Y., Koteliansky, V., Wolfe, S. A., Langer, R., ... Anderson, D. G. (2016).
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system
components in vivo. Nature biotechnology, 34(3), 328–333.
Downloads
Posted
Categories
License
Copyright (c) 2024 Yaxin Zheng
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.