Understanding the Genetic Causes behind Gastroesophageal Reflux Disease (GERD) for Future Exploration of Targeted Treatments
DOI:
https://doi.org/10.58445/rars.1912Keywords:
GERD, Genetics, GNB3, ADRB2, BARX1, ADAMTS17, Gastroesophageal Reflux Disease, Inhibitors, RegulationAbstract
Genetic influences play a key role in the diagnosis of GERD and the presentation of its typical symptoms. This paper reviews risk factors associated with GERD, focusing heavily on genetic risk factors. The common risk factors associated with GERD, especially those associated with genetic influences, will be discussed. Current research on four genes, GNβ3, ADRB2, BARX1, and ADAMTS17 suggests that GERD can be associated with SNP (single base pair) mutations. While environmental factors such as diet and physical activity also play an important role in GERD development, this paper will target genetic causes and focus on how their interactions with the outside environment determine GERD diagnosis. Considering these influences alone and in combination can help us further understand GERD pathogenesis. Selective treatments in managing gene-specific GERD are important to advancing targeted and personalized management of the disease. Future research expanding on genetic patterns and gene-expressed pathways can be used to advance knowledge of GERD risk and improve treatment.
References
“Gastroesophageal Reflux Disease | The University of Kansas Health System.” Accessed: Aug. 06, 2024. [Online]. Available: https://www.kansashealthsystem.com/care/conditions/gastroesophageal-reflux-disease
A. P. S. Hungin, M. Molloy-Bland, and C. Scarpignato, “Revisiting Montreal: New Insights into Symptoms and Their Causes, and Implications for the Future of GERD,” Off. J. Am. Coll. Gastroenterol. ACG, vol. 114, no. 3, p. 414, Mar. 2019, doi: 10.1038/s41395-018-0287-1.
C. Antunes, A. Aleem, and S. A. Curtis, “Gastroesophageal Reflux Disease,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. Accessed: Aug. 06, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK441938/
K. H. A. Boulton and P. W. Dettmar, “A narrative review of the prevalence of gastroesophageal reflux disease (GERD),” Ann. Esophagus, vol. 5, no. 0, Art. no. 0, Mar. 2022, doi: 10.21037/aoe-20-80.
“GNB3 G protein subunit beta 3 [Homo sapiens (human)] - Gene - NCBI.” Accessed: Oct. 19, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/gene/2784
A. Blanco and G. Blanco, “Chapter 25 - Biochemical Basis of Endocrinology (I) Receptors and Signal Transduction,” in Medical Biochemistry, A. Blanco and G. Blanco, Eds., Academic Press, 2017, pp. 547–572. doi: 10.1016/B978-0-12-803550-4.00025-2.
H. G. Kim, K. J. Lee, S. G. Lim, J. Y. Jung, and S. W. Cho, “G-Protein Beta3 Subunit C825T Polymorphism in Patients With Overlap Syndrome of Functional Dyspepsia and Irritable Bowel Syndrome,” J. Neurogastroenterol. Motil., vol. 18, no. 2, p. 205, Apr. 2012, doi: 10.5056/jnm.2012.18.2.205.
A. Patel, S. Hasak, B. D. Nix, G. S. Sayuk, R. D. Newberry, and C. P. Gyawali, “Genetic risk factors for perception of symptoms in GERD: an observational cohort study,” Aliment. Pharmacol. Ther., vol. 47, no. 2, pp. 289–297, 2018, doi: 10.1111/apt.14414.
D. R. de Vries, J. J. M. ter Linde, M. A. van Herwaarden, A. J. P. M. Smout, and M. Samsom, “Gastroesophageal reflux disease is associated with the C825T polymorphism in the G-protein beta3 subunit gene (GNB3),” Am. J. Gastroenterol., vol. 104, no. 2, pp. 281–285, Feb. 2009, doi: 10.1038/ajg.2008.139.
J. A. Jankowski and N. J. Talley, “Dissecting GI Phenotype – Genotype Relationships in GERD and Dyspepsia: An SNP Here and an SNP There!,” Am. J. Gastroenterol., vol. 104, no. 2, p. 286, Jan. 2009, doi: 10.1038/ajg.2008.129.
“ADRB2 protein expression summary - The Human Protein Atlas.” Accessed: Oct. 28, 2024. [Online]. Available: https://www.proteinatlas.org/ENSG00000169252-ADRB2
D. B. Bylund, “Beta-2 Adrenoceptor*,” in xPharm: The Comprehensive Pharmacology Reference, S. J. Enna and D. B. Bylund, Eds., New York: Elsevier, 2007, pp. 1–12. doi: 10.1016/B978-008055232-3.60201-6.
M. Canals, D. P. Poole, N. A. Veldhuis, B. L. Schmidt, and N. W. Bunnett, “G-Protein–Coupled Receptors Are Dynamic Regulators of Digestion and Targets for Digestive Diseases,” Gastroenterology, vol. 156, no. 6, p. 1600, Feb. 2019, doi: 10.1053/j.gastro.2019.01.266.
E. H. Jhun et al., “Beta2-Adrenergic Receptor Polymorphisms and Haplotypes Associate With Chronic Pain in Sickle Cell Disease,” Front. Pharmacol., vol. 10, p. 84, Feb. 2019, doi: 10.3389/fphar.2019.00084.
V. M. Kushnir et al., “Genetic variation in the beta-2 adrenergic receptor (ADRB2) predicts functional gastrointestinal diagnoses and poorer health-related quality of life,” Aliment. Pharmacol. Ther., vol. 38, no. 3, pp. 313–323, 2013, doi: 10.1111/apt.12378.
“Human Gene BARX1 (ENST00000253968.11) from GENCODE V46.” Accessed: Sep. 29, 2024. [Online]. Available: https://genome.ucsc.edu/cgi-bin/hgGene?hgg_gene=uc010mrh.2
A. Argyrou et al., “Polymorphisms of the BARX1 and ADAMTS17 Locus Genes in Individuals With Gastroesophageal Reflux Disease,” J. Neurogastroenterol. Motil., vol. 25, no. 3, pp. 436–441, Jul. 2019, doi: 10.5056/jnm18183.
“ADAMTS17 ADAM metallopeptidase with thrombospondin type 1 motif 17 [Homo sapiens (human)] - Gene - NCBI.” Accessed: Sep. 29, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/gene/170691
S. Zhong and R. A. Khalil, “A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease,” Biochem. Pharmacol., vol. 164, pp. 188–204, Jun. 2019, doi: 10.1016/j.bcp.2019.03.033.
R. Kelwick, I. Desanlis, G. N. Wheeler, and D. R. Edwards, “The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family,” Genome Biol., vol. 16, no. 1, p. 113, May 2015, doi: 10.1186/s13059-015-0676-3.
F. Bonfiglio et al., “A meta-analysis of reflux genome-wide association studies in 6750 Northern Europeans from the general population,” Neurogastroenterol. Motil., vol. 29, no. 2, p. e12923, 2017, doi: 10.1111/nmo.12923.
A. C. Böhmer and J. Schumacher, “Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders,” Neurogastroenterol. Motil., vol. 29, no. 2, p. e13017, 2017, doi: 10.1111/nmo.13017.
D. Meibom et al., “BAY-9835: Discovery of the First Orally Bioavailable ADAMTS7 Inhibitor,” J. Med. Chem., vol. 67, no. 4, pp. 2907–2940, Feb. 2024, doi: 10.1021/acs.jmedchem.3c02036.
C. P. Blobel and S. Apte, “ADAMs and ADAMTSs,” Encycl. Respir. Med., p. 568, Sep. 2021, doi: 10.1016/B978-0-12-801238-3.11698-8.
S. M. L. Gall et al., “ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site,” J. Cell Sci., vol. 123, no. 22, p. 3913, Oct. 2010, doi: 10.1242/jcs.069997.
Downloads
Posted
Categories
License
Copyright (c) 2024 Ayushi Ahuja
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.