Preprint / Version 2

Comparative Analysis of Competing Hypotheses Regarding the Molecular Pathogenesis of Huntington’s Disease

##article.authors##

  • Avi Parkhe Leland High School

DOI:

https://doi.org/10.58445/rars.1908

Keywords:

Huntington's disease, excitotoxicity, NMDA receptor, mutant huntingtin, aggregate, ubiquitin-proteasome system, inclusion body, cellular neuroscience, biochemistry

Abstract

The hallmark molecular mechanism of Huntington’s Disease is neuronal intranuclear inclusion bodies consisting of polyubiquitinated mutant huntingtin (mhtt) aggregates expressing an expanded polyglutamine tract. Aggregate-prone fragments of mhtt bind to several intracellular proteins in addition to the glutamate neurotransmitter receptor N-methyl-D-aspartate (NMDA). This review will detail the molecular and cellular pathways by which mhtt aggregates form clumps in inclusion bodies (IBs) by the impairment of the ubiquitin-proteasome system and the autophagy-lysosome system. It will also review the manner by which intracellular mhtt causes neuronal excitotoxicity via NMDA-receptor mediated excitotoxicity. Numerous studies on models of HD have presented various hypotheses on the pathogenesis of neurodegeneration, such as the debate on whether IB formation is a response mechanism of HD or its cause. This paper will discuss the ongoing debate and suggest future research that may reconcile the competing theories. Finally, this article will highlight current and future therapeutic targets for HD in the context of these pathogenesis theories.

References

Albin RL. Selective neurodegeneration in Huntington's disease. 1995

Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. nature. 2004 Oct 14;431(7010):805-10.

Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 1986 May 8;321(6066):168-71.

Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA. Intranuclear neuronal inclusions in Huntington's disease and Dentatorubral and Pallidoluysian atrophy: correlation between the density of inclusions andIT15CAG triplet repeat length. Neurobiology of disease. 1998 Jan 1;4(6):387-97.

Beglinger LJ, Adams WH, Langbehn D, Fiedorowicz JG, Jorge R, Biglan K, Caviness J, Olson B, Robinson RG, Kieburtz K, Paulsen JS. Results of the citalopram to enhance cognition in Huntington disease trial. Movement Disorders. 2014 Mar;29(3):401-5.

Bennett EJ, Bence NF, Jayakumar R, Kopito RR. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular cell. 2005 Feb 4;17(3):351-65.

Coppen EM, Roos RA. Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs. 2017 Jan;77:29-46.

Cramer H, Warter JM, Renaud B. Analysis of neurotransmitter metabolites and adenosine 3', 5'-monophosphate in the CSF of patients with extrapyramidal motor disorders. Advan

Crick SL, Ruff KM, Garai K, Frieden C, Pappu RV. Unmasking the roles of N-and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. Proceedings of the National Academy of Sciences. 2013 Dec 10;110(50):20075-80.

Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006 Oct 6;127(1):59-69.

Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Current opinion in neurobiology. 2001 Jun 1;11(3):327-35.

Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997 Aug 8;90(3):537-48.

del Toro D, Canals JM, Ginés S, Kojima M, Egea G, Alberch J. Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism. Journal of Neuroscience. 2006 Dec 6;26(49):12748-57.

D'Eletto M, Farrace MG, Rossin F, Strappazzon F, Di Giacomo G, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, Falasca L. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death & Differentiation. 2012 Jul;19(7):1228-38.

D'Eletto M, Grazia Farrace M, Falasca L, Reali V, Oliverio S, Melino G, Griffin M, Fimia GM, Piacentini M. Transglutaminase 2 is involved in autophagosome maturation. Autophagy. 2009 Nov 16;5(8):1145-54.

DeMartino GN, Slaughter CA. The proteasome, a novel protease regulated by multiple mechanisms. Journal of Biological Chemistry. 1999 Aug 6;274(32):22123-6.

Fesus L, Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends in biochemical sciences. 2002 Oct 1;27(10):534-9.

Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nägerl UV. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron. 2006 Oct 19;52(2):239-45.

Gafni J, Ellerby LM. Calpain activation in Huntington's disease. Journal of Neuroscience. 2002 Jun 15;22(12):4842-9.

Goldberg YP, Nicholson D, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, Hayden MR. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature genetics. 1996 Aug 1;13(4):442-9.

Green H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell. 1993;74:955-6.

Guo Q, Huang B, Cheng J, Seefelder M, Engler T, Pfeifer G, Oeckl P, Otto M, Moser F, Maurer M, Pautsch A. The cryo-electron microscopy structure of huntingtin. Nature. 2018 Mar 1;555(7694):117-20.

Hartmann-Petersen R, Seeger M, Gordon C. Transferring substrates to the 26S proteasome. Trends in biochemical sciences. 2003 Jan 1;28(1):26-31.

Hershko A, Ciechanover A. The ubiquitin system. Annual review of biochemistry. 1998 Jul;67(1):425-79.

Hoogeveen AT, Willemsen R, Meyer N, Roolj KE, Roos RA, Ommen GJ, Galjaard H. Characterization and localization of the Huntington disease gene product. Human molecular genetics. 1993 Dec 1;2(12):2069-73.

Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiological reviews. 2009 Jul;89(3):991-1023.

Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJ. Transglutaminases and neurodegeneration. Journal of neurochemistry. 2009 May;109:160-6.

Johnston JA, Dalton MJ, Gurney ME, Kopito RR. Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences. 2000 Nov 7;97(23):12571-6.

Karpova A, Mikhaylova M, Thomas U, Knöpfel T, Behnisch T. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. Journal of Neuroscience. 2006 May 3;26(18):4949-55.

Kawakami T, Suzuki T, Baek SH, Chung CH, Kawasaki H, Hirano H, Ichiyama A, Omata M, Tanaka K. Isolation and characterization of cytosolic and membrane-bound deubiquitinylating enzymes from bovine brain. The journal of biochemistry. 1999 Sep 1;126(3):612-23.

Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology. 2005 Apr;179:4-29.

Kolodziejczyk, Karolina, and Lynn A. Raymond. "Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model." Neurobiology of disease 86 (2016): 62-74.

Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. International review of cell and molecular biology. 2008 Jan 1;267:59-124.

Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995 Sep 22;269(5231):1737-40.

Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Molecular cell. 2010 Oct 22;40(2):280-93.

Krug M, Lössner B, Ott T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain research bulletin. 1984 Jul 1;13(1):39-42.

Kumar A, Kumar V, Singh K, Kumar S, Kim YS, Lee YM, Kim JJ. Therapeutic advances for Huntington’s disease. Brain sciences. 2020 Jan 12;10(1):43.

Leenders KL, Frackowiak RS, Quinn N, Marsden CD. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography. Movement disorders: official journal of the Movement Disorder Society. 1986;1(1):69-77.

Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nature neuroscience. 2002 Sep 1;5(9):833-4.

Li H, Wyman T, Yu ZX, Li SH, Li XJ. Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Human molecular genetics. 2003 Aug 15;12(16):2021-30.

Li X, Wang CE, Huang S, Xu X, Li XJ, Li H, Li S. Inhibiting the ubiquitin–proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. Human molecular genetics. 2010 Jun 15;19(12):2445-55.

Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature reviews Molecular cell biology. 2003 Feb;4(2):140-56.

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996 Nov 1;87(3):493-506.

McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJ, Antonyak MA, Cerione RA, Li B. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO molecular medicine. 2010 Sep 1;2(9):349-70.

McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Annals of neurology. 2004 Jul;56(1):149-62.

Miller JP, Holcomb J, Al-Ramahi I, De Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C, Kwak S, Botas J. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron. 2010 Jul 29;67(2):199-212.

Milnerwood AJ, Raymond LA. Synaptic abnormalities associated with Huntington’s disease. Molecular Mechanisms of Synaptogenesis. 2006:457-71.

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994 Mar 1;12(3):529-40.

Myers RH. Huntington’s disease genetics. NeuroRx. 2004 Apr;1:255-62.

Nowak LP, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462-5.

Ossato G, Digman MA, Aiken C, Lukacsovich T, Marsh JL, Gratton E. A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis. Biophysical journal. 2010 Jun 16;98(12):3078-85.

Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicology letters. 2004 Apr 1;149(1-3):19-23.

Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proceedings of the National Academy of Sciences. 1994 Jun 7;91(12):5355-8.

Pickart CM. Mechanisms underlying ubiquitination. Annual review of biochemistry. 2001 Jul;70(1):503-33.

Riguet N, Mahul-Mellier AL, Maharjan N, Burtscher J, Croisier M, Knott G, Hastings J, Patin A, Reiterer V, Farhan H, Nasarov S. Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nature communications. 2021 Nov 12;12(1):6579.

Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, Wenthold RJ. Molecular determinants of NMDA receptor internalization. Nature neuroscience. 2001 Aug;4(8):794-802.

Sage therapeutics announces topline results from phase 2 precedent study of Dalzanemdor (SAGE-718) in the treatment of mild cognitive impairment in parkinson’s disease [Internet]. 2024 [cited 2024 Sept 7]. Available from: https://investor.sagerx.com/news-releases/news-release-details/sage-therapeutics-announces-topline-results-phase-2-precedent

Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death & Differentiation. 2009 Jan;16(1):46-56.

Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF, Greenamyre JT, Snyder SH, Ross CA. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature medicine. 1999 Oct;5(10):1194-8.

Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997 Aug 8;90(3):549-58.

Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 is colocalized and interacts with mutant huntingtin in Huntington disease rodent animal models. International journal of molecular sciences. 2021 Aug 18;22(16):8914.

Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee JM. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Human molecular genetics. 2016 Oct 15;25(20):4566-76.

Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. The Journal of cell biology. 2005 Dec 19;171(6):1001-12.

Song C, Zhang Y, Parsons CG, Liu YF. Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. Journal of Biological Chemistry. 2003 Aug 29;278(35):33364-9.

Sun Y, Savanenin A, Reddy PH, Liu YF. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. Journal of Biological Chemistry. 2001 Jan 1;276(27):24713-8.

Thomas H, Beck K, Adamczyk M, Aeschlimann P, Langley M, Oita RC, Thiebach L, Hils M, Aeschlimann D. Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino acids. 2013 Jan;44:161-77.

Unti E, Mazzucchi S, Palermo G, Bonuccelli U, Ceravolo R. Antipsychotic drugs in Huntington’s disease. Expert review of neurotherapeutics. 2017 Mar 4;17(3):227-37.

Van de Roovaart HJ, Nguyen N, Veenstra TD. Huntington’s Disease Drug Development: A Phase 3 Pipeline Analysis. Pharmaceuticals. 2023 Oct 24;16(11):1513.

Van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG. Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science. 1998 Jan 9;279(5348):242-7.

Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry. 1999 Jul;68(1):1015-68.

Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Yang YZ, Gafni J, Bredesen D. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. Journal of Neuroscience. 2002 Sep 15;22(18):7862-72.

Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC. Aggregate‐prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Current topics in developmental biology. 2006 Jan 1;76:89-101.

Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'kane CJ. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature chemical biology. 2008 May;4(5):295-305.

Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D, Yuan J. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010 Jan 1;6(1):61-6.

Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Molecular and Cellular Neuroscience. 2004 Mar 1;25(3):469-79.

Downloads

Posted

2024-11-13 — Updated on 2024-11-18

Versions