Assessing DNA Origami Stabilization Techniques
DOI:
https://doi.org/10.58445/rars.175Keywords:
DNA, DNA stabilizationAbstract
In recent years, DNA has emerged as a powerful tool in the field of nanotechnology [1]. The DNA origami technique is largely responsible for this, revolutionizing nanofabrication due to its controllability, precision, and ability to leverage DNA’s unique properties. The technique consists of folding a long, single-stranded DNA (called a scaffold strand) by binding it with shorter staple strands to create almost any shape desired. With a desired structure in mind, researchers can design and assemble scaffold and staple strands using computer software. This is possible because of the Watson-Crick base pairing of DNA strands, which allows for programmable self-assembly of DNA nanostructures and therefore, the synthesis of arbitrary 2D and 3D shapes. Because DNA is a biomolecule,the nanostructures are also biocompatible and can be employed in biological applications including drug delivery. DNA origami nanostructures are not only limited to biological applications; they have also found uses in nanophotonics, plasmonics, and electronics [2-5]. However, DNA origami still faces many challenges before it can be widely adopted. One such challenge is ensuring stability, and thus guaranteeing the performance of the DNA origami, in the presence of heat, nuclease in organic bodies, and chaotropic agents [6,7]. This warrants the question: what methodologies can be employed to best stabilize DNA origami structures? This paper further focuses on two methods: covalently binding various molecules by cross-linking and non-binding encapsulation. Detailed analysis and comparison between various molecules used to bind and coat DNA nanostructures is used to evaluate performance and applicability of each method. In the end an oligolysines coating cross-linked with glutaraldehyde was found to have the strongest biological stability, thymine cross-linking had the strongest thermal stability, a silica coating had the best stability against the largest number of factors, and both graphene and Al3O2 coatings had the best mechanical stability.
References
Seeman, N., Sleiman, H. DNA nanotechnology. Nat Rev Mater 3, 17068 (2018).. 2017. 68, https://doi.org/10.1038/natrevmats
Bui, H., Onodera, C., Kidwell, C., Tan, Y. P., Graugnard, E., Kuang, W., Lee, J., Knowlton, W. B., Yurke, B., & Hughes, W. L. (2010). Programmable periodicity of quantum dot arrays with DNA origami nanotubes. Nano Letters, 10(9), 3367–3372. https://doi.org/10.1021/nl101079u
Acuna, G. P., Möller, F. M., Holzmeister, P., Beater, S., Lalkens, B., & Tinnefeld, P. (2012). Fluorescence enhancement at docking sites of DNA-directed self-assembled Nanoantennas. Science, 338(6106), 506–510. https://doi.org/10.1126/science.1228638
Hung, A., Micheel, C., Bozano, L. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech 5, 121–126 (2010). https://doi.org/10.1038/nnano.2009.450
Wang Y, Lu X, Wu X, Li Y, Tang W, Yang C, Liu J, Ding B. Chemically modified DNA nanostructures for drug delivery. Innovation (Camb). 2022 Feb 10;3(2):100217. doi: 10.1016/j.xinn.2022.100217. PMID: 35243471; PMCID: PMC8881720.
Saminathan Ramakrishnan, Heini Ijäs, Veikko Linko, Adrian Keller,Structural stability of DNA origami nanostructures under application-specific conditions, Computational and Structural Biotechnology Journal, Volume 16, 2018, Pages 342-349, ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2018.09.002. (https://www.sciencedirect.com/science/article/pii/S2001037018300722)
Manuguri, S., Nguyen, M.-K., Loo, J., Natarajan, A. K., & Kuzyk, A. (2022). Advancing the utility of DNA origami technique through enhanced stability of DNA-origami-based assemblies. Bioconjugate Chemistry, 34(1), 6–17. https://doi.org/10.1021/acs.bioconjchem.2c00311
Arivazhagan Rajendran, Masayuki Endo, Yousuke Katsuda, Kumi Hidaka, and Hiroshi Sugiyama, Journal of the American Chemical Society 2011 133 (37), 14488-14491 DOI: 10.1021/ja204546h
Tagawa, M., Shohda, K.-ichiroh, Fujimoto, K., & Suyama, A. (2011). Stabilization of DNA nanostructures by photo-cross-linking. Soft Matter, 7(22), 10931. https://doi.org/10.1039/c1sm06303k
Simon R. Gerrard, Claire Hardiman, Montserrat Shelbourne, Iris Nandhakumar, Bengt Nordén, and Tom Brown, ACS Nano 2012 6 (10), 9221-9228
DOI: 10.1021/nn3035759
De Stefano, M., & Vesterager Gothelf, K. (2016). Dynamic Chemistry of disulfide terminated oligonucleotides in duplexes and double-crossover tiles. ChemBioChem, 17(12), 1122–1126. https://doi.org/10.1002/cbic.201600076
Shanshan Wu, Meizhou Zhang, Jie Song, Stefan Weber, Xiaoguo Liu, Chunhai Fan, and Yuzhou Wu ACS Nano 2021 15 (1), 1555-1565, DOI: 10.1021/acsnano.0c08998
Wang, S.-T., Gray, M. A., Xuan, S., Lin, Y., Byrnes, J., Nguyen, A. I., Todorova, N., Stevens, M. M., Bertozzi, C. R., Zuckermann, R. N., & Gang, O. (2020). DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proceedings of the National Academy of Sciences, 117(12), 6339–6348. https://doi.org/10.1073/pnas.1919749117
Gerling, T., Kube, M., Kick, B., & Dietz, H. (2018). Sequence-programmable covalent bonding of designed DNA assemblies. Science Advances, 4(8). https://doi.org/10.1126/sciadv.aau1157
Cassinelli V, Oberleitner B, Sobotta J, Nickels P, Grossi G, Kempter S, Frischmuth T, Liedl T, Manetto A. One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7795-8. doi: 10.1002/anie.201500561. Epub 2015 May 15. PMID: 25980669.
Kim, Y., & Yin, P. (2019). Enhancing biocompatible stability of DNA nanostructures using dendritic oligonucleotides and brick motifs. Angewandte Chemie, 132(2), 710–713. https://doi.org/10.1002/ange.201911664
Ponnuswamy, N., Bastings, M., Nathwani, B. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat Commun 8, 15654 (2017). https://doi.org/10.1038/ncomms15654
Frances M. Anastassacos, Zhao Zhao, Yang Zeng, and William M. Shih
Journal of the American Chemical Society 2020 142 (7), 3311-3315
DOI: 10.1021/jacs.9b11698
Auvinen, H., Zhang, H., Nonappa, , Kopilow, A., Niemelä, E. H., Nummelin, S., Correia, A., Santos, H. A., Linko, V., Kostiainen, M. A., Adv. Healthcare Mater. 2017, 6, 1700692. https://doi.org/10.1002/adhm.201700692
Armando Hernandez-Garcia, Nicole A. Estrich, Marc W. T. Werten, Johan R. C. Van Der Maarel, Thomas H. LaBean, Frits A. de Wolf, Martien A. Cohen Stuart, and Renko de Vries, ACS Nano 2017 11 (1), 144-152
DOI: 10.1021/acsnano.6b05938
N. P. Agarwal, M. Matthies, F. N. Gür, K. Osada, T. L. Schmidt, Angew. Chem. Int. Ed. 2017, 56, 5460. https://doi.org/10.1002/anie.201608873
Ahmadi, Y., De Llano, E., & Barišić, I. (2018). (poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale, 10(16), 7494–7504. https://doi.org/10.1039/c7nr09461b
Steven D. Perrault and William M. Shih, ACS Nano 2014 8 (5), 5132-5140,
DOI: 10.1021/nn5011914
Aurélie Lacroix, Thomas G. W. Edwardson, Mark A. Hancock, Michael D. Dore, and Hanadi F. Sleiman
Journal of the American Chemical Society 2017 139 (21), 7355-7362
DOI: 10.1021/jacs.7b02917
L. Nguyen, M. Döblinger, T. Liedl, A. Heuer-Jungemann, Angew. Chem. Int. Ed. 2019, 58, 912. https://doi.org/10.1002/anie.201811323
Liu, X., Zhang, F., Jing, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018). https://doi.org/10.1038/s41586-018-0332-7
Minh-Kha Nguyen, Vu Hoang Nguyen, Ashwin Karthick Natarajan, Yike Huang, Joonas Ryssy, Boxuan Shen, and Anton KuzykChemistry of Materials, 2020 32 (15), 6657-6665,
DOI: 10.1021/acs.chemmater.0c02111
Aleksandar Matković et al 2016 New J. Phys. 18 025016,
DOI: 10.1088/1367-2630/18/2/025016
Kim, H.; Arbutina, K.; Xu, A.; Liu, H. Beilstein J. Nanotechnol. 2017, 8, 2363–2375. DOI:10.3762/bjnano.8.236
Downloads
Posted
Categories
License
Copyright (c) 2023 Lionel Yan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.