Preprint / Version 1

Assessing DNA Origami Stabilization Techniques

##article.authors##

  • Lionel Yan High School Student

DOI:

https://doi.org/10.58445/rars.175

Keywords:

DNA, DNA stabilization

Abstract

In recent years, DNA has emerged as a powerful tool in the field of nanotechnology [1]. The DNA origami technique is largely responsible for this, revolutionizing nanofabrication due to its controllability, precision, and ability to leverage DNA’s unique properties. The technique consists of folding a long, single-stranded DNA (called a scaffold strand) by binding it with shorter staple strands to create almost any shape desired. With a desired structure in mind, researchers can design and assemble scaffold and staple strands using computer software. This is possible because of the Watson-Crick base pairing of DNA strands, which allows for programmable self-assembly of DNA nanostructures and therefore, the synthesis of arbitrary 2D and 3D shapes. Because DNA is  a biomolecule,the nanostructures are also biocompatible and can be employed in biological applications including drug delivery.  DNA origami nanostructures are not only limited to biological applications; they have also found uses in nanophotonics, plasmonics, and electronics [2-5]. However, DNA origami still faces many challenges before it can be widely adopted. One such challenge is ensuring stability, and thus guaranteeing the performance of the DNA origami, in the presence of heat, nuclease in organic bodies, and chaotropic agents [6,7]. This warrants the question: what methodologies can be employed to best stabilize DNA origami structures? This paper further focuses on two methods: covalently binding various molecules by cross-linking and non-binding encapsulation. Detailed analysis and comparison between various molecules used to bind and coat DNA nanostructures is used to evaluate performance and applicability of each method. In the end an oligolysines coating cross-linked with glutaraldehyde was found to have the strongest biological stability, thymine cross-linking had the strongest thermal stability, a silica coating had the best stability against the largest number of factors, and both graphene and Al3O2 coatings had the best mechanical stability.

References

Seeman, N., Sleiman, H. DNA nanotechnology. Nat Rev Mater 3, 17068 (2018).. 2017. 68, https://doi.org/10.1038/natrevmats

Bui, H., Onodera, C., Kidwell, C., Tan, Y. P., Graugnard, E., Kuang, W., Lee, J., Knowlton, W. B., Yurke, B., & Hughes, W. L. (2010). Programmable periodicity of quantum dot arrays with DNA origami nanotubes. Nano Letters, 10(9), 3367–3372. https://doi.org/10.1021/nl101079u

Acuna, G. P., Möller, F. M., Holzmeister, P., Beater, S., Lalkens, B., & Tinnefeld, P. (2012). Fluorescence enhancement at docking sites of DNA-directed self-assembled Nanoantennas. Science, 338(6106), 506–510. https://doi.org/10.1126/science.1228638

Hung, A., Micheel, C., Bozano, L. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech 5, 121–126 (2010). https://doi.org/10.1038/nnano.2009.450

Wang Y, Lu X, Wu X, Li Y, Tang W, Yang C, Liu J, Ding B. Chemically modified DNA nanostructures for drug delivery. Innovation (Camb). 2022 Feb 10;3(2):100217. doi: 10.1016/j.xinn.2022.100217. PMID: 35243471; PMCID: PMC8881720.

Saminathan Ramakrishnan, Heini Ijäs, Veikko Linko, Adrian Keller,Structural stability of DNA origami nanostructures under application-specific conditions, Computational and Structural Biotechnology Journal, Volume 16, 2018, Pages 342-349, ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2018.09.002. (https://www.sciencedirect.com/science/article/pii/S2001037018300722)

Manuguri, S., Nguyen, M.-K., Loo, J., Natarajan, A. K., & Kuzyk, A. (2022). Advancing the utility of DNA origami technique through enhanced stability of DNA-origami-based assemblies. Bioconjugate Chemistry, 34(1), 6–17. https://doi.org/10.1021/acs.bioconjchem.2c00311

Arivazhagan Rajendran, Masayuki Endo, Yousuke Katsuda, Kumi Hidaka, and Hiroshi Sugiyama, Journal of the American Chemical Society 2011 133 (37), 14488-14491 DOI: 10.1021/ja204546h

Tagawa, M., Shohda, K.-ichiroh, Fujimoto, K., & Suyama, A. (2011). Stabilization of DNA nanostructures by photo-cross-linking. Soft Matter, 7(22), 10931. https://doi.org/10.1039/c1sm06303k

Simon R. Gerrard, Claire Hardiman, Montserrat Shelbourne, Iris Nandhakumar, Bengt Nordén, and Tom Brown, ACS Nano 2012 6 (10), 9221-9228

DOI: 10.1021/nn3035759

De Stefano, M., & Vesterager Gothelf, K. (2016). Dynamic Chemistry of disulfide terminated oligonucleotides in duplexes and double-crossover tiles. ChemBioChem, 17(12), 1122–1126. https://doi.org/10.1002/cbic.201600076

Shanshan Wu, Meizhou Zhang, Jie Song, Stefan Weber, Xiaoguo Liu, Chunhai Fan, and Yuzhou Wu ACS Nano 2021 15 (1), 1555-1565, DOI: 10.1021/acsnano.0c08998

Wang, S.-T., Gray, M. A., Xuan, S., Lin, Y., Byrnes, J., Nguyen, A. I., Todorova, N., Stevens, M. M., Bertozzi, C. R., Zuckermann, R. N., & Gang, O. (2020). DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proceedings of the National Academy of Sciences, 117(12), 6339–6348. https://doi.org/10.1073/pnas.1919749117

Gerling, T., Kube, M., Kick, B., & Dietz, H. (2018). Sequence-programmable covalent bonding of designed DNA assemblies. Science Advances, 4(8). https://doi.org/10.1126/sciadv.aau1157

Cassinelli V, Oberleitner B, Sobotta J, Nickels P, Grossi G, Kempter S, Frischmuth T, Liedl T, Manetto A. One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7795-8. doi: 10.1002/anie.201500561. Epub 2015 May 15. PMID: 25980669.

Kim, Y., & Yin, P. (2019). Enhancing biocompatible stability of DNA nanostructures using dendritic oligonucleotides and brick motifs. Angewandte Chemie, 132(2), 710–713. https://doi.org/10.1002/ange.201911664

Ponnuswamy, N., Bastings, M., Nathwani, B. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat Commun 8, 15654 (2017). https://doi.org/10.1038/ncomms15654

Frances M. Anastassacos, Zhao Zhao, Yang Zeng, and William M. Shih

Journal of the American Chemical Society 2020 142 (7), 3311-3315

DOI: 10.1021/jacs.9b11698

Auvinen, H., Zhang, H., Nonappa, , Kopilow, A., Niemelä, E. H., Nummelin, S., Correia, A., Santos, H. A., Linko, V., Kostiainen, M. A., Adv. Healthcare Mater. 2017, 6, 1700692. https://doi.org/10.1002/adhm.201700692

Armando Hernandez-Garcia, Nicole A. Estrich, Marc W. T. Werten, Johan R. C. Van Der Maarel, Thomas H. LaBean, Frits A. de Wolf, Martien A. Cohen Stuart, and Renko de Vries, ACS Nano 2017 11 (1), 144-152

DOI: 10.1021/acsnano.6b05938

N. P. Agarwal, M. Matthies, F. N. Gür, K. Osada, T. L. Schmidt, Angew. Chem. Int. Ed. 2017, 56, 5460. https://doi.org/10.1002/anie.201608873

Ahmadi, Y., De Llano, E., & Barišić, I. (2018). (poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale, 10(16), 7494–7504. https://doi.org/10.1039/c7nr09461b

Steven D. Perrault and William M. Shih, ACS Nano 2014 8 (5), 5132-5140,

DOI: 10.1021/nn5011914

Aurélie Lacroix, Thomas G. W. Edwardson, Mark A. Hancock, Michael D. Dore, and Hanadi F. Sleiman

Journal of the American Chemical Society 2017 139 (21), 7355-7362

DOI: 10.1021/jacs.7b02917

L. Nguyen, M. Döblinger, T. Liedl, A. Heuer-Jungemann, Angew. Chem. Int. Ed. 2019, 58, 912. https://doi.org/10.1002/anie.201811323

Liu, X., Zhang, F., Jing, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018). https://doi.org/10.1038/s41586-018-0332-7

Minh-Kha Nguyen, Vu Hoang Nguyen, Ashwin Karthick Natarajan, Yike Huang, Joonas Ryssy, Boxuan Shen, and Anton KuzykChemistry of Materials, 2020 32 (15), 6657-6665,

DOI: 10.1021/acs.chemmater.0c02111

Aleksandar Matković et al 2016 New J. Phys. 18 025016,

DOI: 10.1088/1367-2630/18/2/025016

Kim, H.; Arbutina, K.; Xu, A.; Liu, H. Beilstein J. Nanotechnol. 2017, 8, 2363–2375. DOI:10.3762/bjnano.8.236

Downloads

Posted

2023-04-07