Preprint / Version 1

Huntington’s Disease

A Comprehensive Overview on the Pathophysiology, Diagnosis, and Treatment

##article.authors##

  • Anushka Gadekar Montgomery High School

DOI:

https://doi.org/10.58445/rars.1721

Keywords:

neurodegenerative diseases, genetics, huntington's disease, biology, autophagy, mitochondrial dysfunction, trinucleotide expansions, aavs, clinical trials, protein aggregation

Abstract

Huntington's Disease is a rare neurodegenerative disease that results in nerve cell damage, causing difficulty in performing motor movements. The pathophysiology of HD is very nuanced and unique, as it involves a specific type of mutation in the Huntingtin Protein. This paper will focus on the mechanisms, diagnosis, and treatment of Huntington’s Disease (HD). It will delve into the basics of genetic diseases, covering topics such as DNA replication and repair, genetic mutations, and an introduction to HD. Then there will be an extensive review of the pathophysiology of HD, going over trinucleotide repeats/expansions, the relation between the number of repeats and the age of onset and severity of the symptoms that a patient with HD presents, and the way in which processes such as autophagy and mitochondrial function get impacted as a result of HD. Furthermore, the diagnosis of HD will also be discussed, going into the challenges of diagnosis, differential diagnosis, and methods to test for Huntington’s Disease. Along with diagnosis, prognosis will also be mentioned, where the paper will delve into the long-term outlook of HD in terms of survival rates, the number of cases of HD, and the overall course of the disease. As HD is a very rare genetic disorder, it has no cure and a 0% survival rate. Therefore, a key aspect of this paper is the focus on the future of HD treatment, where numerous ongoing treatment implementations will be discussed and extensively analyzed in order to determine the most effective treatments for HD. 

References

Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem. 2018;62(5):643-723. doi:10.1042/EBC20170053

Miles B, Tadi P. Genetics, Somatic Mutation. In: StatPearls. StatPearls Publishing; 2024. Accessed September 12, 2024. http://www.ncbi.nlm.nih.gov/books/NBK557896/

Budworth H, McMurray CT. A Brief History of Triplet Repeat Diseases. Methods Mol Biol Clifton NJ. 2013;1010:3-17. doi:10.1007/978-1-62703-411-1_1

Shacham T, Sharma N, Lederkremer GZ. Protein Misfolding and ER Stress in Huntington’s Disease. Front Mol Biosci. 2019;6:20. doi:10.3389/fmolb.2019.00020

Martin D, Ladha S, Ehrnhoefer D, Hayden M. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. Published online October 1, 2014. doi:10.1016/j.tins.2014.09.003

Huntington’s Disease. June 6, 2024. Accessed September 13, 2024. https://www.hopkinsmedicine.org/health/conditions-and-diseases/huntingtons-disease

Cooper GM. DNA Repair. In: The Cell: A Molecular Approach. 2nd Edition. Sinauer Associates; 2000. Accessed June 18, 2024. https://www.ncbi.nlm.nih.gov/books/NBK9900/

Carter RJ, Parsons JL. Base Excision Repair, a Pathway Regulated by Posttranslational Modifications. Mol Cell Biol. 2016;36(10):1426-1437. doi:10.1128/MCB.00030-16

Krokan HE, Bjørås M. Base Excision Repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012583. doi:10.1101/cshperspect.a012583

Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA Damage Repair in Huntington’s Disease and Other Neurodegenerative Diseases. Neurother J Am Soc Exp Neurother. 2019;16(4):948-956. doi:10.1007/s13311-019-00768-7

Stoker TB, Mason SL, Greenland JC, Holden ST, Santini H, Barker RA. Huntington’s disease: diagnosis and management. Pract Neurol. 2022;22(1):32-41. doi:10.1136/practneurol-2021-003074

Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry. 2013;84(6):650-656. doi:10.1136/jnnp-2012-302532

Folger A, Wang Y. The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins. Cells. 2021;10(11):2835. doi:10.3390/cells10112835

Juvenile Huntington’s disease. Huntington’s Disease Association. Accessed September 12, 2024. https://www.hda.org.uk/information-and-support/huntingtons-disease/juvenile-huntingtons-disease/

Kwa L, Larson D, Yeh C, Bega D. Influence of Age of Onset on Huntington’s Disease Phenotype. Tremor Hyperkinetic Mov. 10:21. doi:10.5334/tohm.536

Van de Roovaart HJ, Nguyen N, Veenstra TD. Huntington’s Disease Drug Development: A Phase 3 Pipeline Analysis. Pharmaceuticals. 2023;16(11):1513. doi:10.3390/ph16111513

End of life. Huntington’s Disease Association. Accessed September 13, 2024. https://www.hda.org.uk/information-and-support/getting-help/end-of-life/

Solberg OK, Filkuková P, Frich JC, Feragen KJB. Age at Death and Causes of Death in Patients with Huntington Disease in Norway in 1986–2015. J Huntingt Dis. 7(1):77-86. doi:10.3233/JHD-170270

Heemskerk AW, Roos RAC. Aspiration pneumonia and death in Huntington’s disease. PLoS Curr. 2012;4:RRN1293. doi:10.1371/currents.RRN1293

Machiela E, Southwell AL. Biological Aging and the Cellular Pathogenesis of Huntington’s Disease. J Huntingt Dis. 9(2):115-128. doi:10.3233/JHD-200395

Moreno-Gonzalez I, Soto C. Misfolded Protein Aggregates: Mechanisms, Structures and Potential for Disease Transmission. Semin Cell Dev Biol. 2011;22(5):482-487. doi:10.1016/j.semcdb.2011.04.002

Croce KR, Yamamoto A. A role for autophagy in Huntington’s disease. Neurobiol Dis. 2019;122:16-22. doi:10.1016/j.nbd.2018.08.010

Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington’s Disease. Int J Mol Sci. 2021;22(22):12499. doi:10.3390/ijms222212499

Singh G, Pachouri UC, Khaidem DC, Kundu A, Chopra C, Singh P. Mitochondrial DNA Damage and Diseases. F1000Research. 2015;4:176. doi:10.12688/f1000research.6665.1

Xie J, Wang X, Proud CG. mTOR inhibitors in cancer therapy. F1000Research. 2016;5:F1000 Faculty Rev-2078. doi:10.12688/f1000research.9207.1

Nittari G, Roy P, Martinelli I, et al. Rodent Models of Huntington’s Disease: An Overview. Biomedicines. 2023;11(12):3331. doi:10.3390/biomedicines11123331

Tung CW, Huang PY, Chan SC, Cheng PH, Yang SH. The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington’s disease. J Biomed Sci. 2021;28:59. doi:10.1186/s12929-021-00755-1

Byun S, Lee M, Kim M. Gene Therapy for Huntington’s Disease: The Final Strategy for a Cure? J Mov Disord. 2022;15(1):15-20. doi:10.14802/jmd.21006

Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells. 2022;14(4):287-302. doi:10.4252/wjsc.v14.i4.287

Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics. 2023;15(8):2109. doi:10.3390/pharmaceutics15082109

Alkanli SS, Alkanli N, Ay A, Albeniz I. CRISPR/Cas9 Mediated Therapeutic Approach in Huntington’s Disease. Mol Neurobiol. 2023;60(3):1486-1498. doi:10.1007/s12035-022-03150-5

Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016;101(4):213-215. doi:10.1136/archdischild-2016-310459

Study Details | TEsting METformin Against Cognitive Decline in HD | ClinicalTrials.gov. Accessed August 8, 2024. https://clinicaltrials.gov/study/NCT04826692

Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2017;23(5):721-733. doi:10.1177/1352458517690821

Barry D, Bates ME, Labouvie E. FAS and CFL Forms of Verbal Fluency Differ in Difficulty: A Meta-analytic Study. Appl Neuropsychol. 2008;15(2):97-106. doi:10.1080/09084280802083863

Study Details | Evaluating the Efficacy of Dextromethorphan/Quinidine in Treating Irritability in Huntington’s Disease | ClinicalTrials.gov. Accessed September 7, 2024. https://clinicaltrials.gov/study/NCT03854019

Record History | ver. 6: 2021-12-26 | NCT04713982 | ClinicalTrials.gov. Accessed September 7, 2024. https://clinicaltrials.gov/study/NCT04713982?tab=history&a=6

Study Results | A Study of Treatment With Pridopidine (ACR16) in Participants With Huntington’s Disease | ClinicalTrials.gov. Accessed August 6, 2024. https://clinicaltrials.gov/study/NCT00665223?cond=Huntington%27s%20Disease&aggFilters=phase:3&rank=5&tab=results

de Yebenes JG, Landwehrmeyer B, Squitieri F, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10(12):1049-1057. doi:10.1016/S1474-4422(11)70233-2

Study Details | Efficacy and Safety of NestaCell® in Huntington’s Disease | ClinicalTrials.gov. Accessed August 6, 2024. https://clinicaltrials.gov/study/NCT06097780?cond=Huntington%27s%20Disease&aggFilters=phase:3&rank=10

Downloads

Posted

2024-10-03