The Cellular Basis of MASLD and Insulin Resistance
By Kavya Garg
DOI:
https://doi.org/10.58445/rars.1691Keywords:
MASLD, Insulin Resistance, NAFLD, MASH, NASH, Liver Disease, Non-Alcoholic Fatty Liver DiseaseAbstract
MASLD is a widespread liver disease that affects people all over the world. In this paper, the development of MASLD on a cellular level is described along with its causes such as insulin resistance, and to a lesser extent, obesity. MASLD is caused by the accumulation and build up of triglycerides or free fatty acids in hepatocytes. The principal focus of the paper is the connection to insulin resistance, which causes higher fat storage in the liver through the excretion of insulin from Beta cells. As the disease progresses, fat stored in hepatocytes can cause the death of hepatic cells, which causes liver scarring and can cause MASLD to progress into MASH or cirrhosis. The damaged hepatocytes then release interleukin-6, causing pro-inflammatory cytokines to increase inflammation levels. Endothelial cells and Hepatic stellate cells can both cause angiogenesis, disrupting the liver’s vascular structure and leading to cirrhosis. Other causes of MASLD include gut microbial dysbiosis, which can slow the metabolism, as well as overnutrition and a sedentary lifestyle. Treatments for MASLD include lifestyle adjustments like diet and exercise, surgeries, and drug therapies. New drug therapies are being researched and tested.
References
Bibliography:
Bandyopadhyay, S. (n.d.). Role of semaglutide in the treatment of nonalcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis—ScienceDirect. Retrieved August 6, 2024, from https://www.sciencedirect.com/science/article/abs/pii/S1871402123001455?via%3Dihub
Barbier, L., Ferhat, M., Salamé, E., Robin, A., Herbelin, A., Gombert, J.-M., Silvain, C., & Barbarin, A. (2019). Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02014
Chan, W.-K., Chuah, K.-H., Rajaram, R. B., Lim, L.-L., Ratnasingam, J., & Vethakkan, S. R. (2023). Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. Journal of Obesity & Metabolic Syndrome, 32(3), 197–213. https://doi.org/10.7570/jomes23052
Chen, X., Xiao, J., Pang, J., Chen, S., Wang, Q., & Ling, W. (2021). Pancreatic β-Cell Dysfunction Is Associated with Nonalcoholic Fatty Liver Disease. Nutrients, 13(9), 3139. https://doi.org/10.3390/nu13093139
Ding, Z., Wei, Y., Peng, J., Wang, S., Chen, G., & Sun, J. (2023). The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines, 11(10), 2711. https://doi.org/10.3390/biomedicines11102711
Eskridge, W., Cryer, D. R., Schattenberg, J. M., Gastaldelli, A., Malhi, H., Allen, A. M., Noureddin, M., & Sanyal, A. J. (2023). Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis: The Patient and Physician Perspective. Journal of Clinical Medicine, 12(19), 6216. https://doi.org/10.3390/jcm12196216
Freeman, A. M., Acevedo, L. A., & Pennings, N. (2024). Insulin Resistance. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK507839/
Galgani, J. E., Moro, C., & Ravussin, E. (2008). Metabolic flexibility and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 295(5), E1009–E1017. https://doi.org/10.1152/ajpendo.90558.2008
Gao, B., Jeong, W.-I., & Tian, Z. (2008). Liver: An organ with predominant innate immunity. Hepatology, 47(2), 729–736. https://doi.org/10.1002/hep.22034
Geisler, C. E., & Renquist, B. J. (2017). Hepatic lipid accumulation: Cause and consequence of dysregulated glucoregulatory hormones. The Journal of Endocrinology, 234(1), R1–R21. https://doi.org/10.1530/JOE-16-0513
He, Q.-J., Li, Y.-F., Zhao, L.-T., Lin, C.-T., Yu, C.-Y., & Wang, D. (2024). Recent advances in age-related metabolic dysfunction-associated steatotic liver disease. World Journal of Gastroenterology, 30(7), 652–662. https://doi.org/10.3748/wjg.v30.i7.652
Hrncir, T. (2022). Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms, 10(3), 578. https://doi.org/10.3390/microorganisms10030578
Hu, Y., Li, H., Zhang, H., Chen, X., Chen, J., Xu, Z., You, H., Dong, R., Peng, Y., Li, J., Li, X., Wu, D., Zhang, L., Cao, D., Jin, H., Qiu, D., Yang, A., Lou, J., Zhu, X., … Ding, Y. (2023). ZSP1601, a novel pan-phosphodiesterase inhibitor for the treatment of NAFLD, A randomized, placebo-controlled phase Ib/IIa trial. Nature Communications, 14(1), 6409. https://doi.org/10.1038/s41467-023-42162-0
Ilyas, F., Ali, H., Patel, P., Sarfraz, S., Basuli, D., Giammarino, A., & Satapathy, S. K. (2023). Increasing nonalcoholic fatty liver disease–related mortality rates in the United States from 1999 to 2022. Hepatology Communications, 7(7), e00207. https://doi.org/10.1097/HC9.0000000000000207
Koyama, Y., Wang, P., Brenner, D. A., & Kisseleva, T. (2015). Stellate Cells, Portal Myofibroblasts, and Epithelial-to-Mesenchymal Transition. In Stellate Cells in Health and Disease (pp. 87–106). Elsevier. https://doi.org/10.1016/B978-0-12-800134-9.00006-3
Lei, L., Mourabit, H. E., Housset, C., Cadoret, A., & Lemoinne, S. (2021). Role of Angiogenesis in the Pathogenesis of NAFLD. Journal of Clinical Medicine, 10(7). https://doi.org/10.3390/jcm10071338
Lu, Q., Tian, X., Wu, H., Huang, J., Li, M., Mei, Z., Zhou, L., Xie, H., & Zheng, S. (2021). Metabolic Changes of Hepatocytes in NAFLD. Frontiers in Physiology, 12, 710420. https://doi.org/10.3389/fphys.2021.710420
Mandiga, P., Kommu, S., & Bollu, P. C. (2024). Hepatic Encephalopathy. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK430869/
Méndez-Sánchez, N., Valencia-Rodríguez, A., Coronel-Castillo, C., Vera-Barajas, A., Contreras-Carmona, J., Ponciano-Rodríguez, G., & Zamora-Valdés, D. (2020). The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Annals of Translational Medicine, 8(6), 400. https://doi.org/10.21037/atm.2020.02.184
Miao, L., Targher, G., Byrne, C. D., Cao, Y.-Y., & Zheng, M.-H. (2024). Current status and future trends of the global burden of MASLD. Trends in Endocrinology & Metabolism, 0(0). https://doi.org/10.1016/j.tem.2024.02.007
Minciuna, I., Taru, M. G., Procopet, B., & Stefanescu, H. (2024). The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Journal of Clinical Medicine, 13(5), 1406. https://doi.org/10.3390/jcm13051406
Nogueira, J. P., & Cusi, K. (2024). Role of Insulin Resistance in the Development of Nonalcoholic Fatty Liver Disease in People With Type 2 Diabetes: From Bench to Patient Care. Diabetes Spectrum, 37(1), 20–28. https://doi.org/10.2337/dsi23-0013
Park, S.-J., Garcia Diaz, J., Um, E., & Hahn, Y. S. (2023). Major roles of kupffer cells and macrophages in NAFLD development. Frontiers in Endocrinology, 14, 1150118. https://doi.org/10.3389/fendo.2023.1150118
Shuh, M., Bohorquez, H., Loss, G. E., & Cohen, A. J. (2013). Tumor Necrosis Factor-α: Life and Death of Hepatocytes During Liver Ischemia/Reperfusion Injury. Ochsner Journal, 13(1), 119–130.
Singh, A., Girdhar, A., Usman, F., Cury, J., & Bajwa, A. (2012). A rare cause of hypoxia in a patient with liver cirrhosis. Respiratory Medicine Case Reports, 6, 5–6. https://doi.org/10.1016/j.rmcr.2012.07.001
Smith, R. L., Soeters, M. R., Wüst, R. C. I., & Houtkooper, R. H. (2018). Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocrine Reviews, 39(4), 489–517. https://doi.org/10.1210/er.2017-00211
Soto, A., Spongberg, C., Martinino, A., & Giovinazzo, F. (2024). Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines, 12(2), 397. https://doi.org/10.3390/biomedicines12020397
Valenti, L., & Romeo, S. (2016). Destined to develop NAFLD? The predictors of fatty liver from birth to adulthood. Journal of Hepatology, 65(4), 668–670. https://doi.org/10.1016/j.jhep.2016.06.010
Vazquez, J. (n.d.). Clinical Trial Studying Possible New Treatment Option for Patients with NAFLD. UC San Diego Health. Retrieved July 26, 2024, from https://health.ucsd.edu/news/press-releases/2023-08-23-clinical-trial-studying-possible-new-treatment-option-for-patients-with-nafld/
Volk, M. L. (2020). Burden of Cirrhosis on Patients and Caregivers. Hepatology Communications, 4(8), 1107–1111. https://doi.org/10.1002/hep4.1526
Wang, M., Li, L., Xu, Y., Du, J., & Ling, C. (2022). Roles of hepatic stellate cells in NAFLD: From the perspective of inflammation and fibrosis. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.958428
Wang, M.-J., Zhang, H.-L., Chen, F., Guo, X.-J., Liu, Q.-G., & Hou, J. (2024). The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Experimental Hematology & Oncology, 13(1), 62. https://doi.org/10.1186/s40164-024-00527-1
Yanai, H., Adachi, H., Hakoshima, M., Iida, S., & Katsuyama, H. (2023). Metabolic-Dysfunction-Associated Steatotic Liver Disease—Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. International Journal of Molecular Sciences, 24(20), 15473. https://doi.org/10.3390/ijms242015473
Yin, X., Guo, X., Liu, Z., & Wang, J. (2023). Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24(3), Article 3. https://doi.org/10.3390/ijms24032844
Younossi, Z. M., Golabi, P., Price, J. K., Owrangi, S., Gundu-Rao, N., Satchi, R., & Paik, J. M. (2024). The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients With Type 2 Diabetes. Clinical Gastroenterology and Hepatology, 0(0). https://doi.org/10.1016/j.cgh.2024.03.006
Zhu, B., Wei, Y., Zhang, M., Yang, S., Tong, R., Li, W., & Long, E. (2023). Metabolic dysfunction-associated steatotic liver disease: Ferroptosis related mechanisms and potential drugs. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1286449
Downloads
Posted
Categories
License
Copyright (c) 2024 Kavya Garg
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.