Preprint / Version 1

Alzheimer’s Disease

Possible Causes and New Theories for Diagnosis

##article.authors##

  • Sachleen Kaur South Brunswick High School

DOI:

https://doi.org/10.58445/rars.1650

Keywords:

Alzheimer's Disease, amyloid-beta, tau hyperphosphorylation, presenilin, genetics, acetylcholine, glutamate, neurodegenerative diseases

Abstract

The commonly accepted cause of Alzheimer’s Disease (AD) is the accumulation of amyloid-ꞵ, a protein that is prone to aggregation. However, treatments that focus on reducing the production of this dangerous substance have been less effective than expected, leading to the idea that there may be other potential causes of AD. This review focuses on understanding these different causal factors, focusing on tau hyperphosphorylation, presenilin mutations, advanced glycation endproducts, acetylcholine levels, the APOE4 gene, and glutamate uptake. There are many more substances that play a role in Alzheimer’s prognosis, and more research on causes of AD needs to be conducted to find the optimal treatment for this damaging disease.

Author Biography

Sachleen Kaur, South Brunswick High School

ORCID: 0009-0002-1466-816X

References

Alzheimer's Association. (2024). 2024 Alzheimer’s Disease Facts and Figures. In Alzheimer’s Association. Alzheimer’s Association. https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf

Thinakaran, G., & Koo, E. H. (2008). Amyloid Precursor Protein Trafficking, Processing, and Function. Journal of Biological Chemistry, 283(44), 29615–29619. https://doi.org/10.1074/jbc.r800019200

O’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual Review of Neuroscience, 34(1), 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613

Reddy, V. P., Zhu, X., Perry, G., & Smith, M. A. (2009). Oxidative Stress in Diabetes and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 16(4), 763–774. https://doi.org/10.3233/jad-2009-1013

Morales-Brown, P. (2024, March 22). Alzheimer’s brain vs. normal brain: What to know. Medical News Today. https://www.medicalnewstoday.com/articles/alzheimers-brain-vs-normal-brain

Kennedy, M. E., Stamford, A. W., Chen, X., Cox, K., Cumming, J. N., Dockendorf, M. F., Egan, M., Ereshefsky, L., Hodgson, R. A., Hyde, L. A., Jhee, S., Kleijn, H. J., et al (2016). The BACE1 inhibitor verubecestat (MK-8931) reduces CNS -amyloid in animal models and in Alzheimers disease patients. Science Translational Medicine, 8(363), 363ra150–363ra150. https://doi.org/10.1126/scitranslmed.aad9704

Egan, M. F., Mukai, Y., Voss, T., Kost, J., Stone, J., Furtek, C., Mahoney, E., Cummings, J. L., Tariot, P. N., Aisen, P. S., Vellas, B., Lines, C., & Michelson, D. (2019). Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimer’s Research & Therapy, 11(1). https://doi.org/10.1186/s13195-019-0520-1

Mintun, M. A., Lo, A. C., Duggan Evans, C., Wessels, A. M., Ardayfio, P. A., Andersen, S. W., Shcherbinin, S., Sparks, J., Sims, J. R., Brys, M., Apostolova, L. G., Salloway, S. P., & Skovronsky, D. M. (2021). Donanemab in Early Alzheimer’s Disease. New England Journal of Medicine, 384(18). https://doi.org/10.1056/nejmoa2100708

Gong, C.-X., & Iqbal, K. (2008). Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Current Medicinal Chemistry, 15(23), 2321–2328. https://doi.org/10.2174/092986708785909111

Noble, W., Hanger, D. P., Miller, C. C. J., & Lovestone, S. (2013). The Importance of Tau Phosphorylation for Neurodegenerative Diseases. Frontiers in Neurology, 4(83). https://doi.org/10.3389/fneur.2013.00083

Rajmohan, R., & Reddy, P. H. (2017). Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. Journal of Alzheimer’s Disease, 57(4), 975–999. https://doi.org/10.3233/jad-160612

De Strooper, B. (2007). Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. European Molecular Biology Organization, 8(2), 141–146. https://doi.org/10.1038/sj.embor.7400897

Xia, D., Watanabe, H., Wu, B., Lee, S., Li, Y., Tsvetkov, E., Bolshakov, Vadim Y., Shen, J., & Kelleher, Raymond J. (2015). Presenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer’s Disease. Neuron, 85(5), 967–981. https://doi.org/10.1016/j.neuron.2015.02.010

Kurkinen, M., Fułek, M., Fułek, K., Beszłej, J. A., Kurpas, D., & Leszek, J. (2023). The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules, 13(3), 453. https://doi.org/10.3390/biom13030453

Allan Butterfield, D. (2002). Amyloid β-peptide (1-42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer’s Disease Brain. A Review. Free Radical Research, 36(12), 1307–1313. https://doi.org/10.1080/1071576021000049890

Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced Glycation End Products and Diabetic Complications. The Korean Journal of Physiology & Pharmacology, 18(1), 1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

Kothandan, D., Singh, D. S., Yerrakula, G., D, B., N, P., B, V. S. S., A, R., VG, S. R., S, K., & M, J. (2024). Advanced Glycation End Products-Induced Alzheimer’s Disease and Its Novel Therapeutic Approaches: A Comprehensive Review. Cureus, 16(5). https://doi.org/10.7759/cureus.61373

Sienski, G., Narayan, P., Bonner, J. M., Kory, N., Boland, S., Arczewska, A. A., Ralvenius, W. T., Akay, L., Lockshin, E., He, L., Milo, B., et al (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583). https://doi.org/10.1126/scitranslmed.aaz4564

Fortea, J., Pegueroles, J., Alcolea, D., Belbin, O., Dols-Icardo, O., Vaqué-Alcázar, L., Videla, L., Gispert, J. D., Suárez-Calvet, M., Johnson, S. C., Sperling, R., Bejanin, A., Lleó, A., & Montal, V. (2024). APOE4 Homozygozity Represents a Distinct Genetic Form of Alzheimer’s Disease. Nature Medicine, 30, 1–8. https://doi.org/10.1038/s41591-024-02931-w

Chen, Z.-R., Huang, J.-B., Yang, S.-L., & Hong, F.-F. (2022). Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules, 27(6), 1816. https://doi.org/10.3390/molecules27061816

Campanari, M.-L., García-Ayllón, M.-S., Belbin, O., Galcerán, J., Lleó, A., & Sáez-Valero, J. (2014). Acetylcholinesterase Modulates Presenilin-1 Levels and γ-Secretase Activity. Journal of Alzheimer’s Disease, 41(3), 911–924. https://doi.org/10.3233/jad-140426

Perrin, F., Anderson, L. C., Mitchell, S. P. C., Sinha, P., Turchyna, Y.,et al (2023). PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Research square, rs.3.rs-3495211. https://doi.org/10.21203/rs.3.rs-3495211/v1

Downloads

Posted

2024-09-21